

CPSC 225: Intermediate Programming • Spring 2025 61

Lab 5 – Compact

• draw before and after pictures
– task is to remove the nodes between the first occurrence of elt

up to and including the last occurrence of elt

head 2 elt

head

CPSC 225: Intermediate Programming • Spring 2025 62

Lab 5 – Compact

• identify what is different
– remove nodes by relinking without them – no explicit

deallocation is needed

head 2 elt

head

only a single setNext is needed to do the
actual compaction!

CPSC 225: Intermediate Programming • Spring 2025 63

Lab 5 – Compact

• identify the convenient fingers
– only a single setNext is needed – but we need to know the node

to call setNext on and the value to setNext to
• the “convenient fingers” point to those nodes….

head

2 elt

head

afterfirst

CPSC 225: Intermediate Programming • Spring 2025 64

Lab 5 – Compact

• implement the operation – three separate steps
// get first pointing to the first occurrence of elt
for (ListNode first = head ; first != null ; first = first.getNext()) {

 if (first.getElt() == elt) { break; }
}

// get after pointing to the node after the last occurrence of elt

// relink

– avoid nesting later steps inside loops – this leads to needlessly
complex code

–

for (ListNode first = head ; first != null ; first = first.getNext()) {

 if (first.getElt() == elt) {
 // get after pointing to the node after the last occurrence of elt

 }
}

CPSC 225: Intermediate Programming • Spring 2025 65

Lab 5

• pattern for moving through a linked list
– typically runner starts at the head and repeatedly moves to the

next node…

...but starting at the head is only because that’s often the only
pointer to a node that we have for the list

– also, the name runner is like i for arrays – a generic name
when its only purpose is a finger keeping track of the current
spot

→ adapt the pattern (variable name, starting point, and loop
condition) to your specific needs

for (ListNode runner = head ; runner != null ;
 runner = runner.getNext()) {
 …
}

“keep going” condition
may vary

CPSC 225: Intermediate Programming • Spring 2025 66

Lab 5

head afterfirst

for (ListNode after = first.getNext() ; after != null ;
 after = after.getNext()) {
 …
}

– after is the variable we want to work with
– no need to start at the beginning (head) since the first node after

the last occurrence for elt won’t be before the first occurrence
(first)

