Lab 5 — Compact

» draw before and after pictures

task is to remove the nodes between the first occurrence of elt
up to and including the last occurrence of elt

Lab 5 — Compact

¢ identify what is different

remove nodes by relinking without them — no explicit
deallocation is needed

CPSC 225 Intermediate Programming = Spring 2025 61

Lab 5 — Compact

¢ identify the convenient fingers

only a single setNext is needed — but we need to know the node
to call setNext on and the value to setNext to
* the “convenient fingers” point to those nodes....

]
I_i_l head I_i_l first r}l after

CPSC 225: Intermediate Programming + Spring 2025 63

only a single setNext is needed to do the
actual compaction!

CPSC 225: Intermediate Programming = Spring 2025 62

Lab 5 — Compact

* implement the operation — three separate steps

// get first pointing to the first occurrence of elt

for (ListNode first = head ; first != null ; first = first.getNext()) {
if (first.getElt() == elt) { break; }

}

// get after pointing to the node after the last occurrence of elt
// relink

avoid nesting later steps inside loops — this leads to needlessly
complex code

for (ListNode first = head ; first != null ; first = first.getNext()) {
® if (first.getElt() == elt) {

// get after pointing to the node after the last occurrence of elt
}
}

e —
e —
64

CPSC 225: Intermediate Programming + Spring 2025

Lab 5

« pattern for moving through a linked list

typically runner starts at the head and repeatedly moves to the
next node...

for (ListNode runner = head ; runner != null ;

runner = runner.getNext()) {))
“keep going” condition

y may vary

...but starting at the head is only because that's often the only
pointer to a node that we have for the list

also, the name runner is like i for arrays — a generic name
when its only purpose is a finger keeping track of the current
spot

- adapt the pattern (variable name, starting point, and loop
condition) to your specific needs

CPSC 225 Intermediate Programming = Spring 2025 65

for (ListNode after = first.getNext() ; after != null ;
after = after.getNext()) {

}
after is the variable we want to work with
no need to start at the beginning (head) since the first node after
the last occurrence for elt won'’t be before the first occurrence
(first)
CPSC 225: Intermediate Programming » Spring 2025 66

