

CPSC 225: Intermediate Programming • Spring 2025 71

Solitaire

• this assignment is about encryption and secret messages
– it has nothing to do with the card game Solitaire
– the name “Solitaire” comes from the use of a deck of cards in

carrying out the encryption scheme, not from any relationship
with the game

• while you would use a standard deck of cards to carry out
the encryption by hand, this assignment does not use the
Deck class we’ve used elsewhere
– you’ll be writing a SolitaireDeck class which contains the

specific deck-manipulation operations needed for Solitaire
encryption

CPSC 225: Intermediate Programming • Spring 2025 72

• Solitaire uses a different shift for every character in the plaintext, and
uses an easily-memorized algorithm involving a deck of cards and a
passphrase to be able to generate the sequence of shifts
– little information needs to be shared to convey the cipher alphabet (the algorithm,

which can be publicly known, and the passphrase)
– no fixed cipher alphabet – much more secure

Shift Ciphers

• in a substitution cipher, each letter in the
original plaintext message is replaced by
another letter in the ciphertext as defined by
a cipher alphabet
– to decrypt, reverse the substitution
– both sender and receiver need to know the cipher

alphabet (and it must be a secret known only to
them)

– a fixed cipher alphabet is easily broken

• a simple cipher alphabet is a shift cipher,
where each letter is replaced by a letter
shifted a fixed number of places
– only a single number needs to be known to convey

the cipher alphabet
– only 25 possible shifts means this is very easily

broken

ht
tp

s:
//e

n
.w

ik
ip

ed
ia

.o
rg

/w
ik

i/C
ae

sa
r_

ci
ph

e
r

ht
tp

://
a

cc
or

di
n

gt
ob

en
ed

ic
t.c

o
m

/fi
lm

-t
v/

en
ig

m
a

-p
ar

t-
3-

th
e-

su
bs

tit
ut

io
n

-c
ip

he
r/

CPSC 225: Intermediate Programming • Spring 2025 73

Solitaire

• the keystream values define the shift applied to each
letter in the plaintext, not the cipher alphabet
– there is not a fixed cipher alphabet – the same letter appearing

in different places in the plaintext will encrypt to different
ciphertext letters

CPSC 225: Intermediate Programming • Spring 2025 74

Solitaire

• breaking things down into modules is essential

– write SolitaireDeck, implementing the deck manipulations
used in the encryption scheme

– write KeystreamGenerator, which uses those deck
manipulations as building blocks for generating the keystream
values needed for encryption/decryption

• “keying the deck” involves setting up the initial order of cards in the deck
– necessary so the receiver can duplicate the sender’s sequence for decryption
– different initial orders provide different sequences

– write SolitaireEncoder, which uses the keystream values to
do the actual encryption/decryption

CPSC 225: Intermediate Programming • Spring 2025 75

Keying the Deck

this is what the SolitaireDeck
constructor does

• all of the linked list manipulation is done by SolitaireDeck –
keying the deck just involves calling the right methods

the passphrase is a string –
see the String class API for
how to get each character

just call the right methods
of SolitaireDeck

can be a big 'if' or a clever
formula – either way, create
a private helper method

just call the right methods
of SolitaireDeck

look for a convenient method
in the Character class

CPSC 225: Intermediate Programming • Spring 2025 76

Keystream Generation

• all of the linked list manipulation is done by SolitaireDeck –
keystream generation just involves calling the right methods

for all of this, just call the right
methods of SolitaireDeck

CPSC 225: Intermediate Programming • Spring 2025 77

Encryption

this is what KeystreamGenerator's
constructor does

• all of the keystream-related functionality is done by
KeystreamGenerator – encryption just involves calling the
right methods

• SolitaireDeck is not used directly

• decryption is similar

the message is a string – see the String
class API for how to get each character

just call the right
methods of
KeystreamGenerator

can be a big 'if' or a clever
formula – either way, create a
private helper method

look for a convenient
method in the
Character class

CPSC 225: Intermediate Programming • Spring 2025 78

Encryption, Decryption, and the Passphrase

• the deck size depends on the number of possible
characters, not the length of the message to encrypt or
decrypt
– a deck size of 26 suffices for encrypting alphabetic characters

(a-z; capitals and lowercase letters are treated the same)
• an extra credit option is to also encrypt numbers, punctuation, and other

non-letter characters

– the deck always has exactly two jokers regardless of the deck
size

• joker value is deck size + 1

• the passphrase is used to put the deck into a reproducible
starting order for generating keystream values
– the passphrase can be any length – it is not connected to the

size of the deck or the length of the message to encrypt

CPSC 225: Intermediate Programming • Spring 2025 79

Solitaire – Circular Doubly-Linked Lists

• doubly-linked
– each list node contains prev,

next pointers and an
element

• circular
– tail's next points to the head
– head's prev points to the tail

• no need for tail pointers
– a tail pointer lets you find the

tail without going through the
whole list

– in a circular list, head's prev
points to the tail

CPSC 225: Intermediate Programming • Spring 2025 80

Solitaire – Circular Doubly-Linked Lists

• DoubleListNode class is provided
– the element stored is a SolitaireCard

CPSC 225: Intermediate Programming • Spring 2025 81

Solitaire – Circular Doubly-Linked Lists

• figure out operations involving circular doubly-linked lists
the same way as with singly-linked lists

– draw before and after pictures
– identify what changes
– get variables pointing to nodes of interest
– do the updates
– consider special cases

CPSC 225: Intermediate Programming • Spring 2025 82

Solitaire – Circular Doubly-Linked Lists

• building a circular doubly-linked list
– if you know the prev and next nodes when you create a new

node, you can use the second constructor
– if not, use the first constructor or the second one with null

parameters, then use setNext and setPrev

head = new DoubleListNode(…);
head.setNext(head);
head.setPrev(head); DoubleListNode newnode =

 new DoubleListNode(…,head,head);
head.setNext(newnode);
head.setPrev(newnode);

CPSC 225: Intermediate Programming • Spring 2025 83

SolitaireDeck

– start with the
standard case –
joker A is not first or
last

• identify what changes
– rearrange pointers

– do not create
new nodes

• get variables pointing
to the nodes of
interest – joker A,
before joker A, after
joker A, after after
joker A

• setNext and
setPrev to update
links

CPSC 225: Intermediate Programming • Spring 2025 84

SolitaireDeck

– then trace code for special cases
• if it breaks, detect and handle the case

CPSC 225: Intermediate Programming • Spring 2025 85

SolitaireDeck

CPSC 225: Intermediate Programming • Spring 2025 86

SolitaireDeck

CPSC 225: Intermediate Programming • Spring 2025 87

Correctness and Testing SolitaireDeck

It is easy to make mistakes with linked list manipulations!

• draw before and after pictures to work out the operations
• trace through an example once you've written the code

• identify and check preconditions (for all methods)
• check class invariants related to integrity of the linked list

at the end of each method that manipulates the linked list
– checkStructure(), checkContents()

• write test cases in SolitaireTester as you work on
SolitaireDeck
– write test cases after you implement each of the deck operations

• test all methods that might have bugs – anything more than a simple
getter

• test all cases that might have bugs – all different behaviors, typical special
cases

– SolitaireDeck should work with decks of any size, so you can
test with a smaller deck (don't have to use 26 cards)

