"Sloppy" Counting

Thus -

- focus on loops, and how the number of loop repetitions depends on the size of the input
 - identify what repeats the most

But –

 be aware of hidden loops – a method call is not one line of code, but rather all of the lines of code in its body

Notation

CPSC 225: Intermediate Programming . Spring 2025

- O "big-Oh"
 - f(n) = O(g(n)) means that f(n) grows no faster than g(n) i.e. the growth rate of g(n) is an upper bound on the growth rate of f(n)
 - guideline: for algorithms, use O only if f(n) might grow slower than g(n) – perhaps it does in some cases, or the analysis to determine a more precise running time is too complex

Notation

Θ – "big-Theta"

- f(n) = $\Theta(g(n))$ means that f(n) and g(n) grow at the same rate i.e. they have the same shape
- guideline: drop constant multiples and lower-order (slowergrowing) terms from f(n) to get a simpler g(n)

Notation

Ω – "big-Omega"

- $f(n) = \Omega(g(n))$ means that f(n) grows no slower than g(n) i.e.the growth rate of g(n) is a lower bound on the growth rate of f(n)
- guidelines for algorithms
 - use Ω only if f(n) might grow faster than g(n) perhaps it does in some cases, or the analysis to determine a more precise running time is too complex
 - $\circ~\Omega$ is less commonly used because we are usually interested in the worst case an upper bound on how long things will take

Self-Test

For each of the following functions f(n), find a simple function g(n) such that $f(n) = \Theta(g(n))$.

- choose g(n) from 1, log n, \sqrt{n} , n, n log n, n², n³, 2ⁿ, n!

f(n)	g(n)
10 log n	Θ(log n)
log n + 5	Θ(log n)
3n + 4n log n	Θ(n log n)
5n ² + n + 100	Θ(n²)
20	Θ(1)
log 5	Θ(1)
30n ² + n ³	Θ(n ³)
100n + n ²	Θ(n ²)
n² + 2 ⁿ + 5	Θ(2 ⁿ)
n + 5n + 10	Θ(n)
10n log n + 2n ²	Θ(n²)
CPSC 225: Intermediate Program	ming • Spring 2025

100

Self-Test

For each of the following functions f(n), find a simple function g(n) such that $f(n) = \Theta(g(n))$.

- choose g(n) from 1, log n, \sqrt{n} , n, n log n, n², n³, 2ⁿ, n!

f(n)	g(n)	
10 log n		
log n + 5		guidelines –
3n + 4n log n		- remember the order 1, log n,
5n ² + n + 100		- drop constant multiples and
20		lower-order (slower-growing) terms from $f(n)$ to get a simpler $g(n)$
log 5		
30n ² + n ³		
100n + n ²		
$n^2 + 2^n + 5$		
n + 5n + 10		
a 10n log n + 2n ²		99

Examples	'numbers' is an array containing n elements
numbers[size] = el1 size++;	t; only 2 steps no matter the size of 'numbers' $\rightarrow T(n) = \Theta(1)$
<pre>for (int i = 0 ; : System.out.print(}</pre>	$i < numbers.length ; i++) {(numbers[i] + " ");loop body repeats ntimes \rightarrow T(n) = \Theta(n)$
<pre>int count = 0; for (int i = 0 ; i for (int j = i+; if (numbers[i])</pre>	i < numbers.length ; i++) { L ; j < numbers.length ; j++) {] > numbers[j]) { count++; }
}	inner loop body repeats n-1 + n-2 + n-3 + + 1 times \rightarrow T(n) = $\Theta(n^2)$
if you don't know how to com repeats more than n times e more than n times → n x n = (in this case, using O instead repetitions of the inner loop overcounting by so much the	pute this sum, you can also observe that the inner loop never ach time through the outer loop and the outer loop repeats no $O(n^2)$ I of O reflects the fact that we are overcounting the number of - sometimes by quite a lot – and we don't know if we are at it changes the growth rate of the function)

Self-Test

Give a big-Oh or big-Theta characterization, in terms of *n*, of the running time of each of the following functions.

Self-Test

Give a big-Oh or big-Theta characterization, in terms of *n*, of the running time of each of the following functions.

<pre>public void ex6 int a = 0; for (int i = for (int j</pre>	(int n) { O(1) $0 ; i < n^*n ; i++) { n^2 times}$ $= 0 ; j <= i ; j++) { O(n^2) because the most times- this loop will execute is n2(though most of the time it will be less- than that) -$	O(n ⁴) based on n ² repetitions of the <i>i</i> loop and O(n ²) each time for the <i>j</i> loop but the j loop doesn't actually repeat n ² times every time – maybe we are way overcounting counting more carefully, the <i>j</i> loop repeats 1 time when i=0, 2 times when i=1, etc, resulting in a total time of $1+2+3++n^2 =$ O(n ⁴) where we use the fact that the sum $1+2++x =$ O(x ²) (so we didn't overcount
CPSC 225: Intermediate Programming	Spring 2025	by too much)

Self-Test

Give a big-Oh or big-Theta characterization, in terms of *n*, of the running time of each of the following functions.

Self-Test

Give a big-Oh or big-Theta characterization, in terms of *n*, of the running time of each of the following functions.

<pre>for (int i = 0 ; i < n ; i++) { ex1(i); O(i) if we count carefully, O(n) if we observe that the biggest i gets is n }</pre>	$ \begin{array}{l} \Theta(\Pi^2) \text{ based on ex1} \\ \text{taking time } i (1+2+3+ \\ +n = \Theta(n^2)) \\ O(n^2) \text{ based on ex1} \\ \text{taking time } n - n \\ \text{reactives } n O(n) \text{ work} \end{array} $
<pre>public void ex1 (int n) { int a = 0; for (int i = 0 ; i < n ; i++) { a = i; } }</pre>	per repetition = O(n ²)

109

CPSC 225: Intermediate Programming • Spring 2025

Self-Test

Give a big-Oh or big-Theta characterization, in terms of *n*, of the running time of each of the following functions.

Examples	'numbers' is an array containing n elements
<pre>int count = 0; for (int i = 0 ; i for (int j = i+1 if (numbers[i]</pre>	< numbers.length ; i++) { ; j < numbers.length ; j++) { > numbers[j]) { count++; }
}	inner loop body repeats $n-1 + n-2 + n-3 + + 1$ times $\rightarrow T(n) = \Theta(n^2)$
<pre>int count = 0; for (int i = 0 ; i for (int j = i+1 if (numbers[i] } }</pre>	< numbers.length ; i++) { ; j < numbers.length ; j++) { > numbers[j]) { count++; break; }
if numbers[i] > i body repeats n-	numbers[j] is never true, the inner loop 1 + n-2 + n-3 + + 1 times \rightarrow T(n) = $\Theta(n^2)$
if numbers[i] > i loop body repea	numbers[j] is true the first time, the inner ts $1 + 1 + 1 + + 1$ times $\rightarrow T(n) = \Theta(n)$
$\rightarrow T(n) = O(n^2) - CPSC 225$	best case $\Theta(n)$, worst case $\Theta(n^2)$

Which Input?

- worst case the longest the algorithm could take on an input of a given size
 - most common measure but may not give an accurate picture if the worst case is slow but rare
- best case the shortest the algorithm could take on an input of a given size
 - typically reported if it is different from the worst case
- average case / expected case / typical case
 - what's typical?
 - less common requires knowing how likely different possible inputs are

CPSC 225: Intermediate Programming • Spring 2025

Which Input?

- worst case the longest the algorithm could take on an input of a given size
 - most common measure but may not give an accurate picture if the worst case is slow but rare
- best case the shortest the algorithm could take on an input of a given size
 - typically reported if it is different from the worst case

Note: "...on an input of a given size"

- the best case is *not* the smallest possible input size
 running time is always smaller or at least not larger for smaller inputs
 best and worst case are about the particular input instance
- e.g. two slides ago, best case is decreasing order, worst case is increasing order

CPSC 225: Intermediate Programming • Spring 2025

111

rue or false: the worst case running time for an algorithm is for large values of <i>n</i> .				
Answer	Respondents	Percentage		
× True	4	40%		
✓ False	6	60%		

an algorithm never takes less time on larger inputs than on small ones

best and worst case reflects differences for a given size of problem

```
int count = 0;
for ( int i = 0 ; i < numbers.length ; i++ ) {
  for ( int j = i+1 ; j < numbers.length ; j++ ) {
    if ( numbers[i] > numbers[j] ) { count++; break; }
  }
} the inner (j) loop can repeat anywhere from 1 to numbers.length-i+1
  times depending on the exact values in numbers
```

```
CPSC 225: Intermediate Programming • Spring 2025
```

Key Points

- the idea of measuring running time in terms of input size
- the idea of counting loop repetitions
 - (including hidden loops a method call takes the time of its method body even though the call itself is just one statement)
- big-Oh compares growth rates, not actual running times
 - "sloppy counting" ignores multiplicative factors and lower-order terms but these matter for actual running times
 - knowing $T_A(n) = O(T_B(n))$ doesn't tell you that program A will run faster than program B on any particular input
 - it does tell you that A's running time won't blow up faster than B's (so A will remain practical as long as or longer than B)
 - (though A is also likely to be faster than B when n is large enough)
- the ordering of typical growth rate functions from slowerto faster-growing
 - 1, log n, n, n log n, n², n³, 2ⁿ
- a sense of how much better/worse each is

More Sophistication

When the running time depends on more than just n, it can be meaningful to note that.

```
/**
 * Print the first k values in numbers.
 */
public static void print ( int k, int[] numbers ) {
  for ( int i = 0 ; i < k ; i++ ) {
    System.out.println(numbers[i]);
  }
}
- this could be described as worst case O(n) (because k might be
  numbers.length) and best case O(1) (because k might be 0) -
  O(n) in general
- but since the time really depends on k rather than n, O(k) is
  more meaningful</pre>
```

```
CPSC 225: Intermediate Programming • Spring 2025
```

114

6