“Sloppy” Counting

Thus —
focus on loops, and how the number of loop repetitions

depends on the size of the input

identify what repeats the most

But —

be aware of hidden loops — a method call is not
one line of code, but rather all of the lines of
code in its body

e —
e —
94

CPSC 225 Intermediate Programming = Spring 2025

Notation

O — “big-Oh”
f(n) = O(g(n)) means that f(n) grows no faster than g(n) — i.e. the
growth rate of g(n) is an upper bound on the growth rate of f(n)

guideline: for algorithms, use O only if f(n) might grow slower
than g(n) — perhaps it does in some cases, or the analysis to
determine a more precise running time is too complex

50 T T T T 2500

wl f(n) =n \ 4 2000 |-

30+ B 1500

f(n) = n? —_

wl 4 100} f(n) =n+500 = O(n?)

10 500 -

/

0 T T T T 0 e
0 / 10 20 30 40 50 o 10 20 30/ 40 50
f(n)=1=0(n) f(n) =100 = O(n) fl(n)=n=0(n% f(n) =3n=0(n?
because 100 grows
slower than n
CPSC 225: Intermediate Programming « Spring 2025 96

Notation

© — “big-Theta”

f(n) = ©(g(n)) means that f(n) and g(n) grow at the same rate —

i.e. they have the same shape

guideline: drop constant multiples and lower-order (slower-
growing) terms from f(n) to get a simpler g(n)

f(n) =n

it grows (much) ~~__

faster than 1

2500

2000 -

1500

1000

f(n) = n2
it grows (much) ~—
faster than n

L f(n) = n+500 = ©(n)

0

10 20 30 40 50
f(n)=1 f(n) = 100 = ©(1)
because 100 has the
same growth rate as 1

CPSC 225: Intermediate Programming = Spring 2025

Notation

Q — “big-Omega”

0 10 20 0 40 50

f(n) = Q(g(n)) means that f(n) grows no slower than g(n) —i.e.
the growth rate of g(n) is a lower bound on the growth rate of f(n)

guidelines for algorithms

use Q only if f(n) might grow faster than g(n) — perhaps it does in some
cases, or the analysis to determine a more precise running time is too

complex

Q is less commonly used because we are usually interested in the worst
case — an upper bound on how long things will take

r because n grows \

f(n) =n=0Q(1)

faster than 1

2500

2000

1500

1000

f(n) = n2 = Q(n)
because n? grows TTT——
faster than n

L f(n) = n+500

0

f(n)=1

10 20 30 40 50

f(n) = 100

g(n) being a lower bound for f(n) means g(n)'s value stays
below — f(n) can grow at the same rate or faster, but if g(n)
grows faster its value will eventually be bigger than f(n)

/

Defines a lower Defines a tight Defines an upper Defines a lower Defines an upper

bound on the bound (both bound on the bound onthe bound on the
Question running time; the upper and lower) running time; the running time; the running time; the
actual growth rate on the running actual growth rate actual growth rate actual growth rate

can be faster. time. can be slower. can be slower. can be faster.

Q(f(n) ! 5 0 o 5 0
O(f(n) 0 ! 10 0 0 0

1 1

g(n) being an upper bound for f(n) means g(n)'s value stays
above — f(n) can grow at the same rate or slower, but if f(n)
grows faster its value will eventually be bigger than f(n)

CPSC 225 Intermediate Programming = Spring 2025 %8

Self-Test

For each of the following functions f(n), find a simple
function g(n) such that f(n) = ©(g(n)).

choose g(n) from 1, log n, vn, n, n log n, n2, n3, 2", n!

f(n) g(n)
10 log n O(log n)
logn+5 O(log n)

3n+4nlogn O(n log n)
5n2 +n + 100 O(n?)

20 o(1)
log 5 o(1)
30n%+nd O(nd)
100n + n? O(n?)
n2+2"+5 (2"
n+5n+ 10 o(n)

10nlogn +2n2 ©(n?)
100

CPSC 225: Intermediate Programming + Spring 2025

Self-Test

For each of the following functions f(n), find a simple
function g(n) such that f(n) = ©(g(n)).

choose g(n) from 1, log n, Vn, n, n log n, n2, n3, 2", n!

f(n) g(n)

10 log n

logn+5 guidelines —

3n +4nlogn — remember the order 1, log n, ...

5n%2 + n + 100 — drop constant multiples and

20 lower-order (slower-growing) terms
from f(n) to get a simpler g(n)

log 5

30n? + n3

100n + n?

nZ+2"+5

n+ 5n + 10

L —
—
99

- 10nlog n + 2n?

Examples 'numbers' is an array containing n elements
numbers[size] = elt; only 2 steps no matter the size
size++; of 'numbers' = T(n) = (1)

for (int i = 0 ; i < numbers.length ; i++) {
System.out.print(numbers[i] + " ");
loop body repeats n
times - T(n) = ©(n)

int count = 0;

for (int i = 0 ; i < numbers.length ; i++) {
for (int j = i+l ; j < numbers.length ; j++) {
if (numbers[i] > numbers[j]) { count++; }
} inner loop body repeats n-1 + n-2 +

n-3 + ... + 1 times - T(n) = ©(n32)

if you don't know how to compute this sum, you can also observe that the inner loop never
repeats more than n times each time through the outer loop and the outer loop repeats no
more than n times - n x n = O(n?)

(in this case, using O instead of © reflects the fact that we are overcounting the number of

repetitions of the inner loop — sometimes by quite a lot — and we don't know if we are _
overcounting by so much that it changes the growth rate of the function) 101

Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of
the running time of each of the following functions.

public void exl (int n) {
int a = 0;
for (int i =0 ; i <n; i++) {
a=1ij;
}
}
public void ex2 (int n) {
int a = 0;
for (inti=0; i<n; 1i+=5){
a=1;
}
}
public void ex3 (int n) {
int a = 0;
for (int i =0 ; i <n*n ; i++) {
a=1i;
}
}

Self-Test

o(n)

o(n)

O(n?)

Give a big-Oh or big-Theta characterization, in terms of n, of
the running time of each of the following functions.

public void ex6 (int n) {
H o(1)

for (int i =0 ; i < n*n ; i++) { n2times
for (int j =

0;j<=1i;j+){]
a = i*j; 2 f
} 0(n?) because the most times
ATAAAAAAAAAAfthBIoop\NHIexecuteisn2
(though most of the time it will be less
}— than that)

O(n*) based on n?
repetitions of the i loop
and O(n?) each time for
the j loop

but the j loop doesn't
actually repeat n? times
every time - maybe we
are way overcounting

counting more carefully,
the j loop repeats 1 time
when i=0, 2 times when
i=1, etc, resulting in a
total time of
14+243+..+n% =
O(n%)

where we use the fact
that the sum 14+2+...4+x
= 0(x?)

——— (SO We didn't overcount

CPSC 225: Intermediate Programming + Spring 2025

by too much)

Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of
the running time of each of the following functions.

public void ex4 (int n) {
int a =10, b =0; o(n)
for (int i =0 ; i <n; i++) {
a=1ij;
= : ;i
fog £ int LEU 58S 5 D) counting the exact number of
- repetitions of the j loop —
} 0(1+2+3+...+n) = O(n?)
¥ useful sum:
pUbliC void ex5 (int n) { 1+...+n = n(n-1)/2 = n?/2-n/2 = ©(n?)
int a = 0; counting the j loop as “at most n
for (inti=0; i<n; i++) { repetitions each time” — O(n2)
for S 12t] =05 j<=1;]++){ using O instead of © -
a=1%]; 0 means that the running time could
} grow slower than n? — we overcounted
} after all
} © means it grows at the same rate as n?

CPSC 225: Intermediate Programming = Spring 2025

Self-Test

=== — which we only know if we counted
carefully enough

Give a big-Oh or big-Theta characterization, in terms of n, of
the running time of each of the following functions.

public void ex7 (int n
for (inti=0; i<

}

) { O(Nn?) based on ex1
n; i++) { taking time i (1+2+3+...

ex1(i); (i) if we count carefully, O(n) if we +n =0(n?)
¥ observe that the biggest i gets is n 0(n?) based on ex1

taking time n-n

repetitions x O(n) work

public void exl (int n

int a = 0;

for (inti=0; i<
a=1i;

}

}

) { per repetition = O(n?)

n; i++) {

CPSC 225: Intermediate Programming + Spring 2025

Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of
the running time of each of the following functions.

public void ex8 (int n) {
int a = 0; o(1)
for (inti=n; i>1; i/=2) { ?repetitions ©(log n)
a=1i; 0(1)
}
}
wheni=n/l - 0(1) work
wheni=n/2 - O(1) work
wheni =n/4 - O(1) work
wheni =n/8 - O(1) work how many repetitions?
wheni=n/16 - (1) work atrepj,i=n/2iwherej=0,1,2, ...
which j gives n/2i = 1?
wheni =2 - 0(1) work solve for j...
wheni =1 - stop n=2
log,n=j »j=logn
CPSC 225: Intermediate Programming « Spring 2025 110
Examp|es 'numbers' is an array containing n elements

int count = 0;
for (int 1 = 0 ; i < numbers.length ; i++) {
for (int j = i+l ; j < numbers.length ; j++) {
if (numbers[i] > numbers[j]) { count++; }
1 inner loop body repeats n-1 + n-2 +
n-3 + ...+ 1times - T(n) = O(n?)

int count = 0;
for (int i = 0 ; i < numbers.length ; i++) {
for (int j = i+l j < numbers.length ; j++) {
if (numbers[i] > numbers[j]) { count++; break; }

if numbers[i] > numbers]j] is never true, the inner loop
body repeats n-1 + n-2 + n-3 + ... + 1 times = T(n) = ©(n?)

if numbers[i] > numbers]j] is true the first time, the inner
loop body repeats 1 + 1+ 1 + ... + 1 times - T(n) = ©(n)

- T(n) = O(n?) — best case ©(n), worst case ©(n?) =

CPSC 22¢ 112

Which Input?

worst case — the longest the algorithm could take on an
input of a given size
most common measure but may not give an accurate picture if
the worst case is slow but rare

best case — the shortest the algorithm could take on an
input of a given size
typically reported if it is different from the worst case

average case | expected case / typical case
what's typical?
less common — requires knowing how likely different possible
inputs are

CPSC 225: Intermediate Programming = Spring 2025 111

Which Input?

worst case — the longest the algorithm could take on an
input of a given size
most common measure but may not give an accurate picture if
the worst case is slow but rare

best case — the shortest the algorithm could take on an
input of a given size
typically reported if it is different from the worst case

Note: “...on an input of a given size”

the best case is not the smallest possible input size
running time is always smaller — or at least not larger — for smaller inputs

best and worst case are about the particular input instance

e.g. two slides ago, best case is decreasing order, worst case is
increasing order

CPSC 225: Intermediate Programming + Spring 2025 113

True or false: the worst case running time for an algorithm is for large values
ofn.

Answer Respondents Percentage

x True 4 40%

False] 60%

an algorithm never takes less time on larger inputs than on small ones

best and worst case reflects differences for a given size of problem

int count = 0;
for (int i = 0 ; i < numbers.length ; i++) {

for (int j = i+l ; j < numbers.length ; j++) {
if (numbers[i] > numbers[j]) { count++; break; }

} the inner (j) loop can repeat anywhere from 1 to numbers.length-i+1
times depending on the exact values in numbers

CPSC 225 Intermediate Programming = Spring 2025

Key Points

the idea of measuring running time in terms of input size

the idea of counting loop repetitions
(including hidden loops — a method call takes the time of its
method body even though the call itself is just one statement)
big-Oh compares growth rates, not actual running times

“sloppy counting” ignores multiplicative factors and lower-order
terms but these matter for actual running times

knowing T ,(n) = O(T(n)) doesn't tell you that program A will run
faster than program B on any particular input

it does tell you that A's running time won't blow up faster than B's (so A
will remain practical as long as or longer than B)

(though A is also likely to be faster than B when n is large enough)

the ordering of typical growth rate functions from slower-
to faster-growing
1, log n, n, nlog n, n? n3 2"

a sense of how much better/worse each is

More Sophistication

When the running time depends on more than just n, it can
be meaningful to note that.
/**
* Print the first k values in numbers.
*/
public static void print (int k, int[] numbers) {
for (int i =0 ; i<k ; i++) {
System.out.println(numbers[i]);
}
}

this could be described as worst case ©(n) (because k might be
numbers.length) and best case ©(1) (because k might be 0) —
O(n) in general

but since the time really depends on k rather than n, ©(k) is
more meaningful

CPSC 225: Intermediate Programming = Spring 2025

