

CPSC 225: Intermediate Programming • Spring 2025 94

“Sloppy” Counting

Thus –
• focus on loops, and how the number of loop repetitions

depends on the size of the input
– identify what repeats the most

But –
• be aware of hidden loops – a method call is not

one line of code, but rather all of the lines of
code in its body

CPSC 225: Intermediate Programming • Spring 2025 95

Notation

• Θ – “big-Theta”
– f(n) = Θ(g(n)) means that f(n) and g(n) grow at the same rate –

i.e. they have the same shape
– guideline: drop constant multiples and lower-order (slower-

growing) terms from f(n) to get a simpler g(n)

f(n) = 1 f(n) = 100 = Θ(1)
because 100 has the
same growth rate as 1

f(n) = n
it grows (much)
faster than 1

f(n) = n f(n) = 3n = Θ(n)

f(n) = n+500 = Θ(n)

f(n) = n2

it grows (much)
faster than n

CPSC 225: Intermediate Programming • Spring 2025 96

Notation

• O – “big-Oh”
– f(n) = O(g(n)) means that f(n) grows no faster than g(n) – i.e. the

growth rate of g(n) is an upper bound on the growth rate of f(n)
– guideline: for algorithms, use O only if f(n) might grow slower

than g(n) – perhaps it does in some cases, or the analysis to
determine a more precise running time is too complex

f(n) = 1 = O(n) f(n) = 100 = O(n)
because 100 grows
slower than n

f(n) = n

f(n) = n = O(n2) f(n) = 3n = O(n2)

f(n) = n+500 = O(n2)

f(n) = n2

CPSC 225: Intermediate Programming • Spring 2025 97

Notation

• Ω – “big-Omega”
– f(n) = Ω(g(n)) means that f(n) grows no slower than g(n) – i.e.

the growth rate of g(n) is a lower bound on the growth rate of f(n)
– guidelines for algorithms

• use Ω only if f(n) might grow faster than g(n) – perhaps it does in some
cases, or the analysis to determine a more precise running time is too
complex

• Ω is less commonly used because we are usually interested in the worst
case – an upper bound on how long things will take

f(n) = 1 f(n) = 100

f(n) = n = Ω(1)
because n grows
faster than 1

f(n) = n f(n) = 3n

f(n) = n+500

f(n) = n2 = Ω(n)
because n2 grows
faster than n

CPSC 225: Intermediate Programming • Spring 2025 98

g(n) being a lower bound for f(n) means g(n)’s value stays
below – f(n) can grow at the same rate or faster, but if g(n)
grows faster its value will eventually be bigger than f(n)

g(n) being an upper bound for f(n) means g(n)’s value stays
above – f(n) can grow at the same rate or slower, but if f(n)
grows faster its value will eventually be bigger than f(n)

CPSC 225: Intermediate Programming • Spring 2025 99

Self-Test

For each of the following functions f(n), find a simple
function g(n) such that f(n) = Θ(g(n)).

– choose g(n) from 1, log n, √n, n, n log n, n2, n3, 2n, n!

f(n) g(n)

10 log n

log n + 5

3n + 4n log n

5n2 + n + 100

20

log 5

30n2 + n3

100n + n2

n2 + 2n + 5

n + 5n + 10

10n log n + 2n2

guidelines –

– remember the order 1, log n, …

– drop constant multiples and
lower-order (slower-growing) terms
from f(n) to get a simpler g(n)

CPSC 225: Intermediate Programming • Spring 2025 100

Self-Test

For each of the following functions f(n), find a simple
function g(n) such that f(n) = Θ(g(n)).

– choose g(n) from 1, log n, √n, n, n log n, n2, n3, 2n, n!

f(n) g(n)
10 log n Θ(log n)

log n + 5 Θ(log n)

3n + 4n log n Θ(n log n)

5n2 + n + 100 Θ(n2)

20 Θ(1)

log 5 Θ(1)

30n2 + n3 Θ(n3)

100n + n2 Θ(n2)

n2 + 2n + 5 Θ(2n)

n + 5n + 10 Θ(n)

10n log n + 2n2 Θ(n2)

CPSC 225: Intermediate Programming • Spring 2025 101

Examples

numbers[size] = elt;
size++;

for (int i = 0 ; i < numbers.length ; i++) {
 System.out.print(numbers[i] + " ");
}

int count = 0;
for (int i = 0 ; i < numbers.length ; i++) {
 for (int j = i+1 ; j < numbers.length ; j++) {
 if (numbers[i] > numbers[j]) { count++; }
 }
}

'numbers' is an array containing n elements

only 2 steps no matter the size
of 'numbers' T(n) = → Θ(1)

inner loop body repeats n-1 + n-2 +
n-3 + … + 1 times T(n) = → Θ(n2)

loop body repeats n
times T(n) = → Θ(n)

if you don't know how to compute this sum, you can also observe that the inner loop never
repeats more than n times each time through the outer loop and the outer loop repeats no
more than n times n x n = O(n→ 2)
(in this case, using O instead of Θ reflects the fact that we are overcounting the number of
repetitions of the inner loop – sometimes by quite a lot – and we don't know if we are
overcounting by so much that it changes the growth rate of the function)

CPSC 225: Intermediate Programming • Spring 2025 106

Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of
the running time of each of the following functions.

public void ex1 (int n) {
 int a = 0;
 for (int i = 0 ; i < n ; i++) {
 a = i;
 }
}

public void ex2 (int n) {
 int a = 0;
 for (int i = 0 ; i < n ; i += 5) {
 a = i;
 }
}

public void ex3 (int n) {
 int a = 0;
 for (int i = 0 ; i < n*n ; i++) {
 a = i;
 }
}

Θ(n)

Θ(n)

Θ(n2)

CPSC 225: Intermediate Programming • Spring 2025 107

Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of
the running time of each of the following functions.

public void ex4 (int n) {
 int a = 0, b = 0;
 for (int i = 0 ; i < n ; i++) {
 a = i;
 }
 for (int i = 0 ; i < n ; i++) {
 b = i;
 }
}

public void ex5 (int n) {
 int a = 0;
 for (int i = 0 ; i < n ; i++) {
 for (int j = 0 ; j <= i ; j++) {
 a = i*j;
 }
 }
}

Θ(n)

counting the exact number of
repetitions of the j loop –

(1+2+3+...+n) = (nΘ Θ 2)

useful sum:
1+...+n = n(n-1)/2 = n2/2-n/2 = Θ(n2)

counting the j loop as “at most n
repetitions each time” – O(n2)

using O instead of – Θ
O means that the running time could
grow slower than n2 – we overcounted
after all

 means it grows at the same rate as nΘ 2
– which we only know if we counted
carefully enough

CPSC 225: Intermediate Programming • Spring 2025 108

Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of
the running time of each of the following functions.

public void ex6 (int n) {
 int a = 0;
 for (int i = 0 ; i < n*n ; i++) {
 for (int j = 0 ; j <= i ; j++) {
 a = i*j;
 }
 }
}

O(n4) based on n2
repetitions of the i loop
and O(n2) each time for
the j loop

Θ(1)
n2 times

O(n2) because the most times
this loop will execute is n2
(though most of the time it will be less
than that)

but the j loop doesn't
actually repeat n2 times
every time – maybe we
are way overcounting

counting more carefully,
the j loop repeats 1 time
when i=0, 2 times when
i=1, etc, resulting in a
total time of
1+2+3+...+n2 =

(nΘ 4)
where we use the fact
that the sum 1+2+...+x
= (xΘ 2)
(so we didn't overcount
by too much) CPSC 225: Intermediate Programming • Spring 2025 109

Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of
the running time of each of the following functions.

public void ex7 (int n) {
 for (int i = 0 ; i < n ; i++) {
 ex1(i);
 }
}

Θ(n2) based on ex1
taking time i (1+2+3+...
+n = Θ(n2))

O(n2) based on ex1
taking time n – n
repetitions x O(n) work
per repetition = O(n2)

Θ(i) if we count carefully, O(n) if we
observe that the biggest i gets is n

public void ex1 (int n) {
 int a = 0;
 for (int i = 0 ; i < n ; i++) {
 a = i;
 }
}

CPSC 225: Intermediate Programming • Spring 2025 110

Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of
the running time of each of the following functions.

public void ex8 (int n) {
 int a = 0;
 for (int i = n ; i > 1 ; i /= 2) {
 a = i;
 }
}

Θ(log n)Θ(1)

Θ(1)
? repetitions

when i = n/1 → Θ(1) work
when i = n/2 → Θ(1) work
when i = n/4 → Θ(1) work
when i = n/8 → Θ(1) work
when i = n/16 → Θ(1) work
…
when i = 2 → Θ(1) work
when i = 1 stop→

how many repetitions?
at rep j, i = n/2j where j = 0, 1, 2, …
which j gives n/2j = 1?
solve for j…
 n = 2j

 log2 n = j j = log n→

CPSC 225: Intermediate Programming • Spring 2025 111

Which Input?

• worst case – the longest the algorithm could take on an
input of a given size
– most common measure but may not give an accurate picture if

the worst case is slow but rare

• best case – the shortest the algorithm could take on an
input of a given size
– typically reported if it is different from the worst case

• average case / expected case / typical case
– what's typical?
– less common – requires knowing how likely different possible

inputs are

CPSC 225: Intermediate Programming • Spring 2025 112

Examples

int count = 0;
for (int i = 0 ; i < numbers.length ; i++) {
 for (int j = i+1 ; j < numbers.length ; j++) {
 if (numbers[i] > numbers[j]) { count++; }
 }
}

int count = 0;
for (int i = 0 ; i < numbers.length ; i++) {
 for (int j = i+1 ; j < numbers.length ; j++) {
 if (numbers[i] > numbers[j]) { count++; break; }
 }
}

'numbers' is an array containing n elements

inner loop body repeats n-1 + n-2 +
n-3 + … + 1 times T(n) = → Θ(n2)

if numbers[i] > numbers[j] is never true, the inner loop
body repeats n-1 + n-2 + n-3 + … + 1 times T(n) = → Θ(n2)

if numbers[i] > numbers[j] is true the first time, the inner
loop body repeats 1 + 1 + 1 + … + 1 times T(n) = → Θ(n)

 → T(n) = O(n2) – best case Θ(n), worst case Θ(n2)
CPSC 225: Intermediate Programming • Spring 2025 113

Which Input?

• worst case – the longest the algorithm could take on an
input of a given size
– most common measure but may not give an accurate picture if

the worst case is slow but rare

• best case – the shortest the algorithm could take on an
input of a given size
– typically reported if it is different from the worst case

Note: “...on an input of a given size”

– the best case is not the smallest possible input size
• running time is always smaller – or at least not larger – for smaller inputs

– best and worst case are about the particular input instance
• e.g. two slides ago, best case is decreasing order, worst case is

increasing order

CPSC 225: Intermediate Programming • Spring 2025 114

an algorithm never takes less time on larger inputs than on small ones

best and worst case reflects differences for a given size of problem

int count = 0;
for (int i = 0 ; i < numbers.length ; i++) {
 for (int j = i+1 ; j < numbers.length ; j++) {
 if (numbers[i] > numbers[j]) { count++; break; }
 }
} the inner (j) loop can repeat anywhere from 1 to numbers.length-i+1

times depending on the exact values in numbers

CPSC 225: Intermediate Programming • Spring 2025 115

More Sophistication

When the running time depends on more than just n, it can
be meaningful to note that.

/**
 * Print the first k values in numbers.
 */
public static void print (int k, int[] numbers) {
 for (int i = 0 ; i < k ; i++) {
 System.out.println(numbers[i]);
 }
}

– this could be described as worst case Θ(n) (because k might be
numbers.length) and best case Θ(1) (because k might be 0) –
O(n) in general

– but since the time really depends on k rather than n, Θ(k) is
more meaningful

CPSC 225: Intermediate Programming • Spring 2025 116

Key Points

• the idea of measuring running time in terms of input size

• the idea of counting loop repetitions
– (including hidden loops – a method call takes the time of its

method body even though the call itself is just one statement)

• big-Oh compares growth rates, not actual running times
– “sloppy counting” ignores multiplicative factors and lower-order

terms but these matter for actual running times
– knowing T

A
(n) = O(T

B
(n)) doesn't tell you that program A will run

faster than program B on any particular input
• it does tell you that A's running time won't blow up faster than B's (so A

will remain practical as long as or longer than B)
• (though A is also likely to be faster than B when n is large enough)

• the ordering of typical growth rate functions from slower-
to faster-growing
– 1, log n, n, n log n, n2, n3, 2n

• a sense of how much better/worse each is

