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“Sloppy” Counting

Thus – 
• focus on loops, and how the number of loop repetitions 

depends on the size of the input
– identify what repeats the most

But –
• be aware of hidden loops – a method call is not            

one line of code, but rather all of the lines of               
code in its body
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Notation

• Θ – “big-Theta”
– f(n) = Θ(g(n)) means that f(n) and g(n) grow at the same rate – 

i.e. they have the same shape
– guideline: drop constant multiples and lower-order (slower-

growing) terms from f(n) to get a simpler g(n)

f(n) = 1 f(n) = 100 = Θ(1) 
because 100 has the 
same growth rate as 1

f(n) = n
it grows (much) 
faster than 1

f(n) = n f(n) = 3n = Θ(n)

f(n) = n+500 = Θ(n)

f(n) = n2

it grows (much) 
faster than n
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Notation

• O – “big-Oh”
– f(n) = O(g(n)) means that f(n) grows no faster than g(n) – i.e. the 

growth rate of g(n) is an upper bound on the growth rate of f(n)
– guideline: for algorithms, use O only if f(n) might grow slower 

than g(n) – perhaps it does in some cases, or the analysis to 
determine a more precise running time is too complex

f(n) = 1 = O(n) f(n) = 100 = O(n) 
because 100 grows 
slower than n

f(n) = n

f(n) = n = O(n2) f(n) = 3n = O(n2)

f(n) = n+500 = O(n2)

f(n) = n2 
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Notation

• Ω – “big-Omega”
– f(n) = Ω(g(n)) means that f(n) grows no slower than g(n) – i.e. 

the growth rate of g(n) is a lower bound on the growth rate of f(n)
– guidelines for algorithms

• use Ω only if f(n) might grow faster than g(n) – perhaps it does in some 
cases, or the analysis to determine a more precise running time is too 
complex

• Ω is less commonly used because we are usually interested in the worst 
case – an upper bound on how long things will take

f(n) = 1 f(n) = 100

f(n) = n = Ω(1) 
because n grows 
faster than 1

f(n) = n f(n) = 3n

f(n) = n+500

f(n) = n2 = Ω(n) 
because n2 grows 
faster than n
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g(n) being a lower bound for f(n) means g(n)’s value stays 
below – f(n) can grow at the same rate or faster, but if g(n) 
grows faster its value will eventually be bigger than f(n)

g(n) being an upper bound for f(n) means g(n)’s value stays 
above – f(n) can grow at the same rate or slower, but if f(n) 
grows faster its value will eventually be bigger than f(n)
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Self-Test

For each of the following functions f(n), find a simple 
function g(n) such that f(n) = Θ(g(n)).

– choose g(n) from 1, log n, √n, n, n log n, n2, n3, 2n, n!

f(n) g(n)

10 log n

log n + 5

3n + 4n log n

5n2 + n + 100

20

log 5

30n2 + n3

100n + n2

n2 + 2n + 5

n + 5n + 10

10n log n + 2n2

guidelines – 

– remember the order 1, log n, … 

– drop constant multiples and 
lower-order (slower-growing) terms 
from f(n) to get a simpler g(n)
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Self-Test

For each of the following functions f(n), find a simple 
function g(n) such that f(n) = Θ(g(n)).

– choose g(n) from 1, log n, √n, n, n log n, n2, n3, 2n, n!

f(n) g(n)
10 log n Θ(log n)

log n + 5 Θ(log n)

3n + 4n log n Θ(n log n)

5n2 + n + 100 Θ(n2)

20 Θ(1)

log 5 Θ(1)

30n2 + n3 Θ(n3)

100n + n2 Θ(n2)

n2 + 2n + 5 Θ(2n)

n + 5n + 10 Θ(n)

10n log n + 2n2 Θ(n2)
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Examples

numbers[size] = elt;
size++;

for ( int i = 0 ; i < numbers.length ; i++ ) {
  System.out.print(numbers[i] + " ");
}

int count = 0;
for ( int i = 0 ; i < numbers.length ; i++ ) {
  for ( int j = i+1 ; j < numbers.length ; j++ ) {
    if ( numbers[i] > numbers[j] ) { count++; }
  }
}

'numbers' is an array containing n elements

only 2 steps no matter the size 
of 'numbers'  T(n) = → Θ(1)

inner loop body repeats n-1 + n-2 + 
n-3 + … + 1 times  T(n) = → Θ(n2)

loop body repeats n 
times  T(n) = → Θ(n)

if you don't know how to compute this sum, you can also observe that the inner loop never 
repeats more than n times each time through the outer loop and the outer loop repeats no 
more than n times  n x n = O(n→ 2)
(in this case, using O instead of Θ reflects the fact that we are overcounting the number of 
repetitions of the inner loop – sometimes by quite a lot – and we don't know if we are 
overcounting by so much that it changes the growth rate of the function)
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Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of 
the running time of each of the following functions.

public void ex1 ( int n ) {
  int a = 0;
  for ( int i = 0 ; i < n ; i++ ) {
    a = i;
  }
}

public void ex2 ( int n ) {
  int a = 0;
  for ( int i = 0 ; i < n ; i += 5 ) {
    a = i;
  }
}

public void ex3 ( int n ) {
  int a = 0;
  for ( int i = 0 ; i < n*n ; i++ ) {
    a = i;
  }
}

Θ(n)

Θ(n)

Θ(n2)
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Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of 
the running time of each of the following functions.

public void ex4 ( int n ) {
  int a = 0, b = 0;
  for ( int i = 0 ; i < n ; i++ ) {
    a = i;
  }
  for ( int i = 0 ; i < n ; i++ ) {
    b = i;
  }
}

public void ex5 ( int n ) {
  int a = 0;
  for ( int i = 0 ; i < n ; i++ ) {
    for ( int j = 0 ; j <= i ; j++ ) {
      a = i*j;
    }
  }
}

Θ(n)

counting the exact number of 
repetitions of the j loop – 

(1+2+3+...+n) = (nΘ Θ 2) 

useful sum:
1+...+n = n(n-1)/2 = n2/2-n/2 = Θ(n2) 

counting the j loop as “at most n 
repetitions each time” – O(n2)

using O instead of  – Θ
O means that the running time could 
grow slower than n2 – we overcounted 
after all

 means it grows at the same rate as nΘ 2 
– which we only know if we counted 
carefully enough
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Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of 
the running time of each of the following functions.

public void ex6 ( int n ) {
  int a = 0;
  for ( int i = 0 ; i < n*n ; i++ ) {
    for ( int j = 0 ; j <= i ; j++ ) {
      a = i*j;
    }
  }
}

O(n4) based on n2 
repetitions of the i loop 
and O(n2) each time for 
the j loop 

Θ(1)
n2 times

O(n2) because the most times 
this loop will execute is n2 
(though most of the time it will be less 
than that)

but the j loop doesn't 
actually repeat n2 times 
every time – maybe we 
are way overcounting

counting more carefully, 
the j loop repeats 1 time 
when i=0, 2 times when 
i=1, etc, resulting in a 
total time of
1+2+3+...+n2 = 

(nΘ 4)
where we use the fact 
that the sum 1+2+...+x 
= (xΘ 2)
(so we didn't overcount 
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Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of 
the running time of each of the following functions.

public void ex7 ( int n ) {
  for ( int i = 0 ; i < n ; i++ ) {
    ex1(i);
  }
}

Θ(n2) based on ex1 
taking time i (1+2+3+...
+n = Θ(n2))

O(n2) based on ex1 
taking time n – n 
repetitions x O(n) work 
per repetition = O(n2)

Θ(i) if we count carefully, O(n) if we 
observe that the biggest i gets is n

public void ex1 ( int n ) {
  int a = 0;
  for ( int i = 0 ; i < n ; i++ ) {
    a = i;
  }
}
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Self-Test

Give a big-Oh or big-Theta characterization, in terms of n, of 
the running time of each of the following functions.

public void ex8 ( int n ) {
  int a = 0;
  for ( int i = n ; i > 1 ; i /= 2 ) {
    a = i;
  }
}

Θ(log n)Θ(1)

Θ(1)
? repetitions

when i = n/1   → Θ(1) work
when i = n/2   → Θ(1) work
when i = n/4   → Θ(1) work
when i = n/8   → Θ(1) work
when i = n/16   → Θ(1) work
…
when i = 2  → Θ(1) work
when i = 1  stop→

how many repetitions?
at rep j, i = n/2j where j = 0, 1, 2, …
which j gives n/2j = 1?
solve for j… 
   n = 2j

   log2 n = j   j = log n→
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Which Input?

• worst case – the longest the algorithm could take on an 
input of a given size
– most common measure but may not give an accurate picture if 

the worst case is slow but rare

• best case – the shortest the algorithm could take on an 
input of a given size
– typically reported if it is different from the worst case

• average case / expected case / typical case
– what's typical?
– less common – requires knowing how likely different possible 

inputs are
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Examples

int count = 0;
for ( int i = 0 ; i < numbers.length ; i++ ) {
  for ( int j = i+1 ; j < numbers.length ; j++ ) {
    if ( numbers[i] > numbers[j] ) { count++; }
  }
}

int count = 0;
for ( int i = 0 ; i < numbers.length ; i++ ) {
  for ( int j = i+1 ; j < numbers.length ; j++ ) {
    if ( numbers[i] > numbers[j] ) { count++; break; }
  }
}

'numbers' is an array containing n elements

inner loop body repeats n-1 + n-2 + 
n-3 + … + 1 times  T(n) = → Θ(n2)

if numbers[i] > numbers[j] is never true, the inner loop 
body repeats n-1 + n-2 + n-3 + … + 1 times  T(n) = → Θ(n2)

if numbers[i] > numbers[j] is true the first time, the inner 
loop body repeats 1 + 1 + 1 + … + 1 times  T(n) = → Θ(n)

 → T(n) = O(n2) – best case Θ(n), worst case Θ(n2)
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Which Input?

• worst case – the longest the algorithm could take on an 
input of a given size
– most common measure but may not give an accurate picture if 

the worst case is slow but rare

• best case – the shortest the algorithm could take on an 
input of a given size
– typically reported if it is different from the worst case

Note: “...on an input of a given size”

– the best case is not the smallest possible input size
• running time is always smaller – or at least not larger – for smaller inputs

– best and worst case are about the particular input instance
• e.g. two slides ago, best case is decreasing order, worst case is 

increasing order
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an algorithm never takes less time on larger inputs than on small ones

best and worst case reflects differences for a given size of problem

int count = 0;
for ( int i = 0 ; i < numbers.length ; i++ ) {
  for ( int j = i+1 ; j < numbers.length ; j++ ) {
    if ( numbers[i] > numbers[j] ) { count++; break; }
  }
} the inner (j) loop can repeat anywhere from 1 to numbers.length-i+1 

times depending on the exact values in numbers
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More Sophistication

When the running time depends on more than just n, it can 
be meaningful to note that.

/**
 * Print the first k values in numbers.
 */
public static void print ( int k, int[] numbers ) {
  for ( int i = 0 ; i < k ; i++ ) {
    System.out.println(numbers[i]);
  }
}

– this could be described as worst case Θ(n) (because k might be 
numbers.length) and best case Θ(1) (because k might be 0) – 
O(n) in general

– but since the time really depends on k rather than n, Θ(k) is 
more meaningful
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Key Points

• the idea of measuring running time in terms of input size

• the idea of counting loop repetitions
– (including hidden loops – a method call takes the time of its 

method body even though the call itself is just one statement)

• big-Oh compares growth rates, not actual running times
– “sloppy counting” ignores multiplicative factors and lower-order 

terms but these matter for actual running times
– knowing T

A
(n) = O(T

B
(n)) doesn't tell you that program A will run 

faster than program B on any particular input
• it does tell you that A's running time won't blow up faster than B's (so A 

will remain practical as long as or longer than B)
• (though A is also likely to be faster than B when n is large enough)

• the ordering of typical growth rate functions from slower- 
to faster-growing
– 1, log n, n, n log n, n2, n3, 2n

• a sense of how much better/worse each is


