

CPSC 225: Intermediate Programming • Spring 2025 107

Omino

• things commonly omitted

– tester – OminoTester should contain test cases for Polyomino,
Piece, Board as specified in the handout

– comments – Javadoc-style comments for classes and methods

– preconditions – consider preconditions for all methods
• identify them in the method comments and check them in the method

body

CPSC 225: Intermediate Programming • Spring 2025 108

Omino

• be sure to follow the specifications in the handout

– include all of the methods specified, named as directed (when a
name is given) and with the parameters specified

• no reason to change the order of the parameters from how they are listed

CPSC 225: Intermediate Programming • Spring 2025 109

Omino

• naming conventions

– end instance variable names with _
– constants in ALL CAPS

– name boolean methods so that the code reads well in an if
statement

• compare if (board.getStatus(row,col)) { … } to
 if (board.isOccupied(row,col)) { … } or
 if (board.hasPiece(row,col)) { … } or
 if (board.pieceAt(row,col)) { … }

• convention is isXYZ but other readable versions are OK

CPSC 225: Intermediate Programming • Spring 2025 110

Omino

• remove any import java.awt.Color; statements and
replace with import javafx.scene.paint.Color;

• (0,0) for the board should be in the lower left corner, not
the upper left corner
– rows get smaller as pieces move down the board

CPSC 225: Intermediate Programming • Spring 2025 111

Omino

• compute the dimensions of the piece in its
current orientation
– (not the number of blocks / length of the array)

(row,col) = (13,4)

height
is 2

width is 3

• check/update all of the board positions covered
by blocks of the piece, not just (row,col)
– (row,col) might not even be covered by a block of

the piece

CPSC 225: Intermediate Programming • Spring 2025 112

Omino

• robustness

– printing a message is not appropriate error-handling if the error
stems from values coming from outside the method

• throw IllegalArgumentException for violated preconditions

– make sure the program doesn’t crash if the user tries to move a
piece off the side of the board

• instance variables and helper methods should be private

• constants should be static (and final)

CPSC 225: Intermediate Programming • Spring 2025 113

Omino

• it can be awkward to have to preemptively undo
something – instead only update it when needed

for (int i = 0 ; i < n ; i++) {
 if (…) {
 …
 i--;
 }
}

for (int i = 0 ; i < n ;) {
 if (…) {
 …
 } else {
 i++;
 }
}

