

Streams

CPSC 225: Intermediate Programming • Spring 2025 2

I/O

From the program's perspective, all that matters about
output is that it goes out, and all that matters about input is
that it comes in.

So we should be able to work with input and output in a
uniform matter regardless of whether it involves
screen/keyboard, files, the network, …

CPSC 225: Intermediate Programming • Spring 2025 3

Streams

Java's abstraction is the stream.

• byte streams read and write data as raw bytes
– for machine-formatted data – the meaning comes from how the

bytes are interpreted after being read
– not human-readable – bytes must be interpreted correctly

(application-specific)
– efficient, in space and time
– writing and reading must match – need the same interpretation

• character streams read and write data as characters
– human-readable – bytes are interpreted using the standard

character encoding
– (what you want for most applications)

CPSC 225: Intermediate Programming • Spring 2025 4

Streams

all streams are
ultimately byte
streams but there is a
standard encoding for
characters

CPSC 225: Intermediate Programming • Spring 2025 5

Streams

all streams are
ultimately byte
streams and so even
character streams
require a matching
read/write
interpretation – but
there is a standard
interpretation for
“character stream”

CPSC 225: Intermediate Programming • Spring 2025 6

Streams
buffering can improve performance
for sources like files and URLs, but
it isn’t required or tied to byte vs
character streams

BufferedReader/ Writer are
specific versions of buffered
streams for character streams but
the concept of buffering isn’t limited
to character streams

text files are common, but there are
plenty of other kinds of files –
including images

numbers are stored in text form
with character streams, but the
stream doesn’t do the conversion –
the number is written/read as
characters and the program
converts from/to numbers
separately from the stream

underneath it is always a byte
stream, but those can be wrapped
in character streams so from the
program’s perspective network
communication isn’t limited to one
or the other

CPSC 225: Intermediate Programming • Spring 2025 7

Stream Classes

Stream classes come in two varieties –

• “hose” classes
– think of a basic stream as a hose dispensing bytes or characters
– attached to a source (for input) or a destination (for output)

• wrapper or “nozzle” classes
– think of a wrapper class as a nozzle on the hose that converts

the bytes/characters into something else as they leave the hose
– constructors take an existing stream object as a parameter

Other classes –

• other classes may provide “nozzle” functionality without
being part of the hierarchy of stream classes
– e.g. Scanner

CPSC 225: Intermediate Programming • Spring 2025 8

Working With Streams

Steps –

• acquire a hose connected to the desired input source or
output destination

• (optionally) apply one or more nozzles to get useful
functionality for reading/writing

• use the stream (read/write)
– when reading from finite sources (such as a file), often need to

be able to detect end-of-file (eof) / end-of-stream

• (in most cases) disconnect the hose (close the stream)
when done
– generally only disconnect the hose if you created the hose

• don't close System.in or System.out, or a stream passed as a parameter

CPSC 225: Intermediate Programming • Spring 2025 9

Working With Streams
•

• what hose you pick can depend on both the
source/destination and byte vs character streams
– know how your information is represented

• what nozzle(s) you pick depends on the underlying
stream (byte vs character) and how you want to access it

– e.g. for reading a text source, you can
• use Reader's read to get one character at a time
• use BufferedReader's readLine to get one line at a time
• use Scanner to parse text

– for writing text, typically use PrintWriter

– can apply multiple nozzles
• e.g. BufferedReader wraps a Reader, but System.in is an
InputStream – first need to wrap System.in with an
InputStreamReader

BufferedReader reader =
 new BufferedReader(new InputStreamReader(System.in));

CPSC 225: Intermediate Programming • Spring 2025 10

A Brief Overview of Some Stream Classes

...Reader means things are
ultimately read as characters

BufferedReader is
suitable and commonly
used for reading from files,
but it is not limited to files

...Writer means writing
(output), not input

...OutputStream means writing (output), not input

you can write text with a DataOutputStream, but if that
is all you want to do, PrintWriter is a better choice

CPSC 225: Intermediate Programming • Spring 2025 11

Detecting End-of-Stream (and Other Reading-Related Issues)

When reading from a finite source (such as a file), it is
common to want to read until the end of the source.

In general, there are two strategies when you want to do
something that may or may not succeed –

• look before you leap
– check for the conditions that mean success and only take the action if

those conditions are satisfied

• leap before you look
– take the action, and handle any problems that occur

But looking first may not always be possible.
– e.g. can't know what's next without reading it
– e.g. can't know if there's any more to read without reading it

So...for reading input, leap before you look – and look at the
full description of read methods in the API to find out how to
determine if end-of-stream was reached.

CPSC 225: Intermediate Programming • Spring 2025 12

Stream Type Hierarchy

• byte streams
– by convention, InputStream

and OutputStream denote
byte streams

• character streams
– by convention, Reader and
Writer denote character
streams

CPSC 225: Intermediate Programming • Spring 2025 13

Writing Reusable Code

• declare variables and parameters using the most general
type possible
– prefer nozzle types to hose types

CPSC 225: Intermediate Programming • Spring 2025 16

Acquiring Hoses

Existing hose objects already connected –

• standard input – System.in
– type InputStream

• standard output – System.out
– type PrintStream

• standard error – System.err
– type PrintStream

Are these byte streams or character streams?
 – byte streams

CPSC 225: Intermediate Programming • Spring 2025 17

Acquiring Hoses

Create a new hose connected to a file –

• FileInputStream, FileOutputStream – for machine-readable
(byte-oriented) files

• FileReader, FileWriter – for human-readable (character-
oriented) files

CPSC 225: Intermediate Programming • Spring 2025 18

Acquiring Hoses

Create a new hose connected to a URL –

• create a URL and get the stream from it
– byte stream

CPSC 225: Intermediate Programming • Spring 2025 19

Acquiring Hoses

Create a new hose connected to a string –

• StringReader
– character stream

• StringWriter
– character stream

CPSC 225: Intermediate Programming • Spring 2025 20

Top-Level Stream Classes

• byte streams
– InputStream

– OutputStream

both also provide methods to
work with an array of bytes

CPSC 225: Intermediate Programming • Spring 2025 21

Top-Level Stream Classes

• character streams
– Reader

– Writer

both also provide methods to
work with an array of chars

CPSC 225: Intermediate Programming • Spring 2025 22

Wrapper/Nozzle Classes – Character Streams

• PrintWriter
note: unlike many streams, PrintWriter does
not throw exceptions – full robustness requires
calling checkError() to determine if an error
occurred

CPSC 225: Intermediate Programming • Spring 2025 23

Wrapper/Nozzle Classes – Character Streams

• BufferedReader

CPSC 225: Intermediate Programming • Spring 2025 24

Utility Classes

• Scanner acts like a nozzle in terms of reading from a
stream, but isn't part of the streams type hierarchy
– you can't add another nozzle to a Scanner

– it provides more sophisticated text parsing than the wrapper
classes

Readable covers
the Reader classes

CPSC 225: Intermediate Programming • Spring 2025 25

Wrapper/Nozzle Classes – Byte Streams

• InputStreamReader/OutputStreamWriter
– read/write characters to byte streams

CPSC 225: Intermediate Programming • Spring 2025 26

Wrapper/Nozzle Classes – Byte Streams

• DataOutputStream
– write values of various types (uses binary representation)

CPSC 225: Intermediate Programming • Spring 2025 27

Wrapper/Nozzle Classes – Byte Streams

• DataInputStream
– read values of various types (uses binary representation)

CPSC 225: Intermediate Programming • Spring 2025 28

Serialized Object I/O

DataInputStream/DataOutputStream provide methods for
reading/writing primitive types.

ObjectInputStream/ObjectOutputStream provide
readObject(), writeObject(obj) to read/write objects.

Notes.
– the object class must implement Serializable
– the binary format of objects is specific to Java – can't use
ObjectOutputStream to write data to be read by something
other than another Java program

– the binary format of objects is subject to change with different
versions of Java – don't use it for long-term storage

– only one copy of an object is written even if there are multiple
references to it

• only serialize immutable objects (e.g. String), and/or
• call reset() on the stream when needed

