

ADTs and Collections

CPSC 225: Intermediate Programming • Spring 2025 2

Abstraction

• abstraction refers to hiding implementation details and
exposing only the essential features of a system
– a core concept in computer science

• if statements and while and for loops provide control
abstraction
– we can focus on defining alternatives and what is repeated

without knowing the details of how that is implemented in terms
of jump instructions in machine code

• subroutines provide procedural abstraction
– you can use a subroutine based on its header and contract

without having to know the details of its body

• abstract data types (ADTs) provide data abstraction
– you can define a data type in terms of its concept and operations

without regards to how those operations are actually
implemented

CPSC 225: Intermediate Programming • Spring 2025 3

ADTs vs Data Structures

• an abstract data type is defined by its concept and
operations
– e.g. ordered list of strings, Stack, Queue

• concrete data structures are used to realize the
implementation of an ADT
– e.g. arrays, linked lists

– generally have choices about how to implement an ADT, with
different time/space tradeoffs

– changing the data structure used to implement a given ADT
does not change the correctness of code using that ADT, but
may have a big influence on time/space requirements

CPSC 225: Intermediate Programming • Spring 2025 4

linked lists and arrays are
concrete data structures

changing the implementation
of an ADT changes only the
private internals of a class –
instance variables and method
bodies

“a specific way of storing and
managing day” refers to a
specific implementation

CPSC 225: Intermediate Programming • Spring 2025 5

Fundamental ADTs – Collections

Many common ADTs store collections of values –

• containers provide storage and retrieval of elements
independent of value
– the ordering of elements depends on the structure of the

container rather than the elements themselves
– elements can be of any type

• dictionaries (or maps) and sets provide access to
elements by value
– lookup according to an element's key
– elements can be of any type but the key type must support

equality comparison (so you can tell if two keys are the same)

• priority queues provide access to elements in order by
content
– ordered by priority associated with elements
– elements can be of any type but the priority type must be

comparable (so there is an ordering)
CPSC 225: Intermediate Programming • Spring 2025 6

ADTs – Common Containers
List
(also known as
Vector,
Sequence)

linear order, access by
rank (index) or position
(first/last, after/before)

rank-based (array-like) operations
● add(x), add(r,x) – add x at the end or with rank

r
● get(r) – get element with rank r
● remove(r) – remove (and return) elt with rank r

position-based (linked-list-like) operations
● first, last() – get first/last position
● before(p), after(p) – get position before/after p
● addBefore(p,x), addAfter(p,x) – insert x

after/before position p
● get(p) – get element at position p
● remove(p) – remove (and return) elt at pos p
● replace(p,x) – replace elt at pos p with x

Stack linear order, access only
at one end
● LIFO – insert and

remove at the same end

● push(x) – insert x at the top of the stack
● top() – return top item (without removal)
● pop() – remove and return the top item on the

stack

Queue linear order, access only
at both ends
● FIFO – insert at one

end, remove from the
other

● enqueue(x) – insert x at the back of the queue
● peek() – return front item

(without removal)
● dequeue() – remove and return

the front item in the queue

typical operations

CPSC 225: Intermediate Programming • Spring 2025 7

it’s always possible that you may find implementations that
use different names such as add or remove

Queue operation names are less standardized than Stack

CPSC 225: Intermediate Programming • Spring 2025 8

the statement about queues is
true, but stacks only allow
insertion and removal at one
end

the memory required depends
on the implementation, and
both stacks and queues can
be implemented efficiently
using both arrays and linked
lists

the statement about stacks is
true, but queues only allow
insertion and removal at
opposite ends
(there is a variation of a queue that
allows insertion and removal at both
ends called a deque, for double-
ended queue)

CPSC 225: Intermediate Programming • Spring 2025 9

the book notes that an efficient
array implementation of a
queue is “trickier” but it is
possible

CPSC 225: Intermediate Programming • Spring 2025 10

Applications of ADTs

The kind of access to elements imposed by different types
of containers can be exploited to achieve algorithmic goals.

ADT some applications of the ADT

List general-purpose container
round-robin scheduling, taking turns

Stack match most recent thing, proper nesting, reversing
program call stack – keeping track of subroutine calls
evaluating postfix expressions (e.g. 2 15 12 - 17 * +)
depth-first search (DFS) – go deep before backing up

Queue FIFO order minimizes waiting time
round-robin scheduling, taking turns
breadth-first search (BFS) – spread out in levels

CPSC 225: Intermediate Programming • Spring 2025 11

Choosing Between Container ADTs

Use a queue when –
• you want things out in the same order you put them in

Use a stack when –
• you want things out in the reverse of the order you put

them in
• you want to access the most recent thing added

Use a list when –
• stacks and queues don't serve your needs
• you want to iterate through things repeatedly
• you need to insert/remove/access at any position

– stacks and queues don’t allow direct access to anything but the
top/front

CPSC 225: Intermediate Programming • Spring 2025 12

Implementing (Collections) ADTs

• defining a type → write a class

• ADT operations → public methods

• need to decide on the instance variables
– a concrete data structure (array, linked list, ...) to hold the

elements
– supporting things e.g. size for partially-full array
– additional things to help with efficiency e.g. tail pointer for linked

list

• also need to decide on how to use the instance variables
– e.g. does the top of the stack go at the beginning or the end of

the array? at the head or tail of the linked list?
→ consider running time

CPSC 225: Intermediate Programming • Spring 2025 13

array and size for a partially-
full array
size would be a better name
since we are thinking of this
as the number of elements

head pointer for the linked list –
top is a more descriptive name
than head as it reminds us that
the head of the list corresponds
to the top of the stack

a private helper class – we need a Node
class for the linked list, but it is only used
internally to help with the implementation

CPSC 225: Intermediate Programming • Spring 2025 15

Implementing Stack

operation
array – top at

beginning
array – top at end

linked list – top at
head

linked list – top at
tail

instance
variables

● partially full
dynamic array –
array, size

● partially full
dynamic array –
array, size

● linked list – head
● size

● linked list – head
● size

size() Θ(1) – return size Θ(1) – return size Θ(1) – return size Θ(1) – return size

isEmpty() Θ(1) – return size
== 0

Θ(1) – return size
== 0

Θ(1) – return size
== 0

Θ(1) – return size
== 0

push(elt) Θ(n) – shift elements
out of the way

O(n) – Θ(1) put
element in slot size;
Θ(n) if we have to
grow

Θ(1) – insert at head Θ(n) – Θ(n) to find
the tail, then Θ(1) to
add new node

pop() Θ(n) – shift elements
to fill gap

Θ(1) – top is in slot
size-1, decrement
size

Θ(1) – remove head Θ(n) – Θ(n) to find
node before the tail,
then Θ(1) to remove
the tail

top() Θ(1) – top is in slot 0 Θ(1) – top is in slot
size-1

Θ(1) – head's
element

Θ(n) – to find the tail

0 1 2 3 4

10 20 30

0 1 2 3 4

30 20 10

top 10

20

30

10

20

30

30

20

10

CPSC 225: Intermediate Programming • Spring 2025 16

Implementing Stack

operation
array – top at

beginning
array – top at end

linked list – top at
head

linked list – top at
tail

instance
variables

● partially full
dynamic array –
array, size

● partially full
dynamic array –
array, size

● linked list – head
● size

● doubly linked list
– head, tail

● size

size() Θ(1) – return size Θ(1) – return size Θ(1) – return size Θ(1) – return size

isEmpty() Θ(1) – return size
== 0

Θ(1) – return size
== 0

Θ(1) – return size
== 0

Θ(1) – return size
== 0

push(elt) Θ(n) – shift elements
out of the way

O(n) – Θ(1) put
element in slot size;
Θ(n) if we have to
grow

Θ(1) – insert at head Θ(1) – add new
node, update tail

pop() Θ(n) – shift elements
to fill gap

Θ(1) – top is in slot
size-1, decrement
size

Θ(1) – remove head Θ(1) – get node
before the tail,
then remove the
tail

top() Θ(1) – top is in slot 0 Θ(1) – top is in slot
size-1

Θ(1) – head's
element

Θ(1) – tail’s
element

0 1 2 3 4

10 20 30

0 1 2 3 4

30 20 10

top 10

20

30

10

20

30

30

20

10

CPSC 225: Intermediate Programming • Spring 2025 18

Implementing Queue

operation
array – front at

beginning
array – front at

end
linked list – front

at head
linked list – front

at tail

instance
variables

● partially full
dynamic array –
array, size

● partially full
dynamic array –
array, size

● linked list – head
● size

● linked list – head
● size

size() Θ(1) – return size Θ(1) – return size Θ(1) – return size Θ(1) – return size

isEmpty() Θ(1) – return size
== 0

Θ(1) – return size
== 0

Θ(1) – return size
== 0

Θ(1) – return size
== 0

enqueue(elt) O(n) – Θ(1) put
element in slot
size; Θ(n) if we
have to grow

Θ(n) – shift
elements to make
room; also Θ(n) if
we have to grow

Θ(n) – find tail, add
new node

Θ(1) – insert at head

dequeue() Θ(n) – shift
elements to fill gap

Θ(1) – front is in slot
size-1, decrement
size

Θ(1) – remove head Θ(n) – Θ(n) to find
node before the tail,
then Θ(1) to remove
the tail

front() Θ(1) – front is in slot
0

Θ(1) – front is in slot
size-1

Θ(1) – head's
element

Θ(n) – to find the
tail

0 1 2 3 4

10 20 30

0 1 2 3 4

30 20 10

10

20

30

30

20

10

front

10 20 30

CPSC 225: Intermediate Programming • Spring 2025 19

Implementing Queue

operation
array – front at beginning (circular

array)
linked list – front at head

instance
variables

● partially full dynamic array – array, size
● index of first element – front

● linked list – head, tail
● size

size() Θ(1) – return size Θ(1) – return size

isEmpty() Θ(1) – return size == 0 Θ(1) – return size == 0

enqueue(elt) O(n) – Θ(1) put element in slot size; Θ(n)
if we have to grow

Θ(1) – add new node, update tail

dequeue() Θ(1) – increment front Θ(1) – remove head

front() Θ(1) – front is in slot front Θ(1) – head's element

0 1 2 3 4

10 20 30
10

20

30

front

10 20 30

front

0 1 2 3 4

50 20 30 40

front

front

20 30 40 50

CPSC 225: Intermediate Programming • Spring 2025 20

Array-Based Implementations

Observations –

• things arrays are good for – Θ(1)
– accessing a particular slot (random access)
– inserting or removing elements at the end
– inserting or removing elements in the middle when the order

doesn't need to be preserved (can swap with the last thing)

•

• things arrays are less good for – Θ(n)
– inserting or removing elements in the middle when the order

needs to be preserved
– varying-size collections when you have to grow or shrink

• doubling the size mitigates the expense of copy over a series of insertions

doesn't involve a loop
– same number of
steps regardless of the
size of the array

involve a loop – number
of steps depends on the
size of the array

CPSC 225: Intermediate Programming • Spring 2025 21

Linked List-Based Implementations

Observations –

• things linked lists are good for – Θ(1)
– accessing the head
– inserting or removing elements at the head

• inserting at the tail with a tail pointer
• removing the tail if doubly-linked

– inserting or removing after a node
• inserting or removing before a node if doubly-linked

• things linked lists are less good for – Θ(n)
– accessing a particular position (no random access)
– inserting or removing at a particular position
– inserting or removing before a node (if singly-linked)

doesn't involve a loop
– same number of
steps regardless of the
length of the list

involve a loop –
number of steps
depends on the
length of the list

CPSC 225: Intermediate Programming • Spring 2025 22

Arrays vs. Linked Lists

Advantages of linked lists –

• no need to grow when full because nodes are
allocated/deallocated as needed

• no empty slots
– though arrays still have an advantage in space usage as long as

they are at least half full

• insert/remove don't require shifting
– much faster than array if insertion point is known (otherwise

requires time to find node)

Advantages of arrays –

• random access
– linked lists support sequential access only – must scan forward

from head

• simpler if the number of elements doesn’t change

