

CPSC 225: Intermediate Programming • Spring 2025 37

Iterators

To go through a collection of items one at a time, you might
imagine a finger moving through the collection, pointing at
each item in turn.

This is an iterator – the current position of the finger plus the
ability to move the finger to the next thing.

CPSC 225: Intermediate Programming • Spring 2025 38

“iterator” in general
refers to the
abstraction, but there
is a specific Java type
Iterator

CPSC 225: Intermediate Programming • Spring 2025 39

Iterators

All iterators in Java are type Iterator<E>.

Using an iterator –

for (Iterator<E> iter = mycollection.iterator() ;
 iter.hasNext() ;) {
 E elt = iter.next();
 …
}

– all Collections classes have an iterator() method which
returns an iterator initialized so the finger is pointing just before
the first thing

– hasNext() asks whether there are any more elements after
where the finger is pointing

– next() advances the finger to the next element and returns it
– E is replaced by the actual type of whatever is in the collection –

don’t actually type E!
• when used alone and not as a type parameter, can use the corresponding

primitive type e.g. int
CPSC 225: Intermediate Programming • Spring 2025 40

Iterators

There's also a special form of for loop (“for-each loop”)
which is often more convenient –

 for (E elt : mycollection) {
 …
 }

– elt takes on the values of each element in the collection in turn

for-each loops can also be used with arrays –

 int[] numbers = { … };
 for (int num : numbers) {
 …
 }

CPSC 225: Intermediate Programming • Spring 2025 41

Example

• Reverser
• ListDemo

CPSC 225: Intermediate Programming • Spring 2025 42

Equality Comparisons – Objects

• referential equality refers to whether two things are the
same object i.e. at the some location in memory
– the references are the same

• logical equality refers to whether two things represent the
same value i.e. are considered equivalent
– “equivalent” depends on the specific class, so equals() must be

implemented when appropriate – the default is to do the same thing as ==

a

b

c

a == b
a != c

“hi”
a

“hi”
b

a != b
a.equals(b)

CPSC 225: Intermediate Programming • Spring 2025 43

Equality Comparisons – ==

• regardless of type, == compares what is in the box
– for primitive types, this compares values
– for objects, this means referential equality because references

are in the box instead of values

a

b

c

a == b
a != c

5

5

a

b

8c

a == b
a != c

CPSC 225: Intermediate Programming • Spring 2025 44

CPSC 225: Intermediate Programming • Spring 2025 45

== is valid for objects
such as strings, it just
checks referential
equality instead of
logical equality

should read
“.equals() can only
be used with object
types” – a.equals(b)
is illegal if a, b are
primitive types like
ints

CPSC 225: Intermediate Programming • Spring 2025 46

Collections ADTs

Containers –
• List
• Stack
• Queue

Ordered containers –
• PriorityQueue

Lookup and membership –
• Dictionary (Map)
• Set

characterized by the idea of elements
arranged in a line (ordered, not
necessarily sorted)

elements accessed by position

elements are ordered by priority

given a piece of information (key),
find an associated piece of
information (value)

CPSC 225: Intermediate Programming • Spring 2025 47 CPSC 225: Intermediate Programming • Spring 2025 50

Java Collections – Ordered Containers

• java.util.PriorityQueue<E>
– similar to a queue, but elements are ordered – smallest element

is at the front

Key operations –
• add(e)
• peek()
• remove(), poll()

– remove() throws an exception if the queue is empty, poll()
returns null instead

• contains(e)
• clear()
• size()
• iterator()

CPSC 225: Intermediate Programming • Spring 2025 51

Comparing Elements

• option #1 – the elements stored in the priority queue
implement Comparable<E>
– appropriate when elements of type E have a natural ordering
– Integer, String, etc implement Comparable

public class MyClass implements Comparable<MyClass> {
 …
 public int compareTo (MyClass other) {
 // return negative value if 'this' comes first,
 // positive value if 'other' comes first, and 0
 // if equal
 …
 }
}

PriorityQueue<MyClass> pq = new PriorityQueue<MyClass>();

CPSC 225: Intermediate Programming • Spring 2025 52

Comparing Elements

• option #2 – specify a Comparator<E>
– appropriate when there are multiple ways elements of type E can

be compared, or to compare objects not defined as Comparable

public class MyClassComparator implements
 Comparator<MyClass> {

 public int compare (MyClass obj1, MyClass obj2) {
 // return negative value if 'obj1' comes first,
 // positive value if 'obj2' comes first, and 0
 // if equal
 …
 }
}

PriorityQueue<MyClass> pq =
 new PriorityQueue<MyClass>(new MyClassComparator());

CPSC 225: Intermediate Programming • Spring 2025 53

Example

• Sorter
• LengthSorter

CPSC 225: Intermediate Programming • Spring 2025 54

Java Collections – Lookup and Membership

Lookup tasks involve finding the value associated with a
particular key.

• indexing in an array a[i] is a form of lookup – the index i is
the key, the value stored in the array is the value

• an associative array is a generalization of an array where
the index can be anything, not just an integer 0..n-1

A set is an unordered collection of elements.
– “unordered” means that there isn't a notion of 1st, 2nd, 3rd, …

Duplicates are not allowed.
• key operation is contains – does an element belong to the

set?

CPSC 225: Intermediate Programming • Spring 2025 55

Map in the Java Collections Framework

Map<K,V>

CPSC 225: Intermediate Programming • Spring 2025 56

Set in the Java Collections Framework Set<E>

CPSC 225: Intermediate Programming • Spring 2025 57

Java Collections – Lookup and Membership

• interface Map<K,V>
• concrete classes HashMap<K,V>, TreeMap<K,V>

– HashMap is usually what you want – use TreeMap only if you
need to access the keys in sorted order

• interface Set<E>
• concrete classes HashSet<E>, TreeSet<E>

– HashSet is usually what you want – use TreeSet only if you
need to access the keys in sorted order

CPSC 225: Intermediate Programming • Spring 2025 58

Map in the Java Collections Framework

• concrete classes – for creating new objects

– HashMap<K,V>
• elements are stored in a hashtable – key is converted to an array index

using a hash function; the value is stored in that slot
• essentially O(1) put, get, remove, containsKey
• equals() is used to test for equality

– TreeMap<K,V>
• elements are stored in a balanced binary search tree – keys can be

accessed in sorted order
– keys must implement Comparable or else a Comparator must be supplied to

the TreeMap constructor
• O(log n) put, get, remove, containsKey
• compareTo() is used to test for equality

HashMap is usually what you want – use TreeMap only if you
need to access the keys in sorted order.

very fast no matter
how many things
are in the Map

pretty fast, but takes
longer with more things in
the Map

CPSC 225: Intermediate Programming • Spring 2025 59

Example

• LuckyNumbers

