

CPSC 225: Intermediate Programming • Spring 2025 118

Demo

CPSC 225: Intermediate Programming • Spring 2025 119

Adventure – UI

• Does the game have a visual component of the rooms
and the player walking around, or is it all just text?
– all text

• Does the user only use words or are there key presses as
well?
– only words

CPSC 225: Intermediate Programming • Spring 2025 120

Adventure – Game Mechanics

• Do players move around within rooms, or only between
rooms?
– only between rooms

• What’s the difference between GO and MOVE?
– no difference, just convenience (and compatibility with similar

games that might use one term vs the other)
– there are three alternatives for how players can move around:
GO direction, MOVE direction, or just direction by itself

CPSC 225: Intermediate Programming • Spring 2025 121

Adventure – World Building

• Do the rooms have to align by direction, or can/must there
be more complicated paths between rooms?
– exits can only be to the north, south, east, and west

but that doesn't mean the rooms have to be aligned
in a grid

– you should have something more complex/interesting than just a
sequence of rooms where the only option is to move from one to
the next, but otherwise it is up to you

• in most cases, there should be more than one way to get to each room

CPSC 225: Intermediate Programming • Spring 2025 122https://rickadams.org/adventure/maps/CaveMap.jpg CPSC 225: Intermediate Programming • Spring 2025 123

Adventure – World Building

• Is everything about the rooms and game initialized from
the files, or is some of it created in the code itself?

• Does the stuff about file formats mean that we're not to
hardcode the descriptions and details into the classes?
– everything is initialized from the files

• room names, descriptions, how they are connected
• item names, descriptions, starting locations
• scoring, tasks to be completed

– the code should not include specific room names, item names,
point values, etc

CPSC 225: Intermediate Programming • Spring 2025 124

Adventure – Working With Files

• What’s the link between the files and building the world?
• How do you approach getting data from a file into an

object?
– the handout defines file formats that contain all the information

you need for the kind of thing (room, item, task)

one room

• read all of the info for
one room at a time,
storing the values in
variables
– handout gives suggestions

for parsing e.g. read a line
at a time, use String’s
split method when a line
contains several things
separated by a delimiter

• create an object for the
room once you have all
the info for that room

CPSC 225: Intermediate Programming • Spring 2025 125

Adventure – Working With Files

• How do you match up the order things are written in the
file and the order they are going to be used in
constructing the world?
– the order rooms, items, tasks are listed in the file doesn't matter
– to resolve references –

CPSC 225: Intermediate Programming • Spring 2025 126

Adventure

• The whole thing seems hard.
– with any big task, the key lies in breaking it down into smaller

pieces
• follow the plan of attack in the handout!

– start early enough so that you can come to office hours and/or
TFs if you get stuck or want to go over your ideas

CPSC 225: Intermediate Programming • Spring 2025 127

CPSC 225: Intermediate Programming • Spring 2025 128

Adventure – Class Design

• Do we need a specific number of classes? Or can we
make classes as we see fit?
– the design is up to you, but it should be a good design

• there should be classes for the things not well represented by an existing
type

• each class should have a single purpose

• How do we know if the program design is complete, and
on the right track? Will problems with the design ruin the
whole program?
– a poor design can make it more difficult to successfully complete

the program while a good design can make it easier

– the separate (and earlier) deadline for the design is so you can
get feedback on it before proceeding with the implementation

CPSC 225: Intermediate Programming • Spring 2025 129

Scrabble Design
class represents stored info methods

player a single player in
the game

their tiles (rack)
score
name
stats – number of times they've gone first,
games won, words played, …

getters for most things
constructor – param: name
add points to the score
put a tile on the rack in a particular position
add a tile to the end of the rack
remove tile from a particular position

players all of the players
in the game

the players – sequence

board the game board –
the points and the
tiles placed there

the tiles placed on the board (and their
locations)
the scoring for each square
board squares
maybe – arrangement of board squares

tile one letter tile letter
point value

bag holds the tiles not
yet drawn

tiles in the bag – jumble constructor – make a bag full of all the tiles
switch tiles – param: a tile not in the bag, return: a tile in the bag
draw a random tile
size or isEmpty

rack holds each
player's tiles

tiles on the rack – sequence in a row put a tile on the rack in a particular position
move a tile / swap tiles based on position
remove a tile by letter
add a tile to the end of the rack
remove tile from a particular position

board
space

one space on the
board

scoring info for that space
tile, if any, in that space
maybe – location on the board (row,col)

getters
put a tile in this space
remove a tile from this space – maybe, depending on how
challenges are handled

game game logic local variables – board, players, bag, …

scrabble main program

word list list of valid
scrabble words

valid scrabble words

in progress – complete methods and resolve maybes by thinking about
how each kind of object will be used in the program – this comes from the
game play described in the rules and the pseudocode written to cover the
main program functionality

CPSC 225: Intermediate Programming • Spring 2025 130

Class Designs

• distinguish between single things and collections, and
between individual instances and properties of a thing

• use singular names for singular things, plural names for
collections

• include classes for single things when those single things
are complex
– i.e. more than one piece of information
– i.e. any non-trivial behavior

• include classes for collections of things (only) when the
standard collections (e.g. List, Stack, Queue) are not
good matches

CPSC 225: Intermediate Programming • Spring 2025 131

Design Principles and Guidelines

• classes should have a single purpose
– if you can’t quickly summarize the purpose...it’s too much

• separation of concerns
– separate the handling of commands from the user interface

(helper methods)

• methods belong in the class where…
– ...they access/manipulate stored info in that class
– ...they fit with the purpose/responsibility of that class

• methods should provide only the access needed
– avoid getters that return objects or collections when only

something specific is needed

• consider information flow
– identify parameters – what additional info does the method need

for its task?
– identify whether or not there's a return value (and what it is)

CPSC 225: Intermediate Programming • Spring 2025 132

Adventure – Pseudocode

• pseudocode is the program in English rather than Java
– steps rather than a description of the rules

• pseudocode should reflect the structure of the program
– identify loops and conditionals
– indent bodies

CPSC 225: Intermediate Programming • Spring 2025 134

Scrabble Main Program

• start with a broad outline of
the main program tasks
– cover all the functionality, just

not all the details

set up game
determine who goes first
each player draws 7 tiles from the
bag and adds them to their rack
repeat
 current player takes a turn
 switch to the next player
until the game ends
do final score updates

CPSC 225: Intermediate Programming • Spring 2025 135

Scrabble Main Program

• refine by filling in more details

// set up game
initialize list of valid words
put tiles into bag

// determine who goes first
each player draws a tile; the one closest to
the beginning of the alphabet goes first

each player draws 7 tiles from the bag and
adds them to their rack

repeat
 current player takes a turn
 switch to the next player
until a player is out of tiles or there have
been 6 successive scoreless turns and a
player decides to end the game

// do final score updates
for each player
 if they have unplayed letters

reduce the player's score by the total
of their unplayed letters

 else
increase the player's score by the total
of the opponent's unplayed letters

player chooses action – pass,
exchange (if there are at
least 7 tiles in the bag), or
play

if pass
 do nothing

else if exchange
exchange one or more tiles
for an equal number from
the bag

else if play
player plays tiles on the
board, using or adjacent to
at least one tile already
on the board

if the word(s) formed are
not legal word(s),
remove the tiles from the
board

 otherwise
score the tiles played

player replenishes their
tiles by drawing from the
bag CPSC 225: Intermediate Programming • Spring 2025 136

Scrabble Main Program

• add to / update class design to
reflect what this means in
terms of methods for the
identified classes

// set up game
initialize list of valid words
put tiles into bag

// determine who goes first
each player draws a tile; the one closest to
the beginning of the alphabet goes first

each player draws 7 tiles from the bag and
adds them to their rack

repeat
 current player takes a turn
 switch to the next player
until a player is out of tiles or there have
been 6 successive scoreless turns and a
player decides to end the game

// do final score updates
for each player
 if they have unplayed letters

reduce the player's score by the total
of their unplayed letters

 else
increase the player's score by the total
of the opponent's unplayed letters

WordList: constructor
local variables: word list

Bag: constructor
local variables: bag of tiles

Bag: draw tile (remove a
random tile)
Tile: get letter
local variables: collection
of players

Bag: draw tile (remove a
random tile)
Player: add tile to rack
Rack: add tile to the end of
the rack

Player: has tiles?

local variables: number of
consecutive scoreless turns

Player: has tiles?, get total
tile score, reduce score,
increase score
Rack: is empty?, get total
tile score

CPSC 225: Intermediate Programming • Spring 2025 137 CPSC 225: Intermediate Programming • Spring 2025 138

Adventure – Game Mechanics

• Is there a duration requirement or limit to how long the
game should take?
– no (though be reasonable)
– there minimum requirements for the number of rooms, items,

and winning
– extra credit is possible for going beyond that, though an

extremely elaborate world is not the most efficient way to earn
extra credit

CPSC 225: Intermediate Programming • Spring 2025 139

Adventure – Game Mechanics

• Are points displayed to the user while the game is in
progress?
– the goal and the tasks needed for winning are not displayed to

the player – discovering that is part of the game play
– point values for tasks are not displayed directly
– there is a SCORE command which displays the player's current

score

CPSC 225: Intermediate Programming • Spring 2025 140

Adventure – World Building

• How do we link a room to multiple other rooms?

– an option is the same way you link list nodes or tree nodes to
other nodes

CPSC 225: Intermediate Programming • Spring 2025 141

Adventure – World Building

• Should different rooms be procedurally generated and
random for each play through, or is the game the same
every time?
– the world and goals are the same every time
– elements of randomness can be included for extra credit, but be

careful to keep all of the specific world configuration within the
files

CPSC 225: Intermediate Programming • Spring 2025 142

Adventure – Scoring and Winning

• It seems like we'll need some sort of collection with tasks
and how much those tasks are worth
– yes

CPSC 225: Intermediate Programming • Spring 2025 143

Adventure – Scoring and Winning

• The whole thing seems hard, but especially scoring and
winning.
– with any big task, the key lies in breaking it down into smaller

pieces
• follow the plan of attack in the handout!

– scoring and winning isn't especially difficult by itself, but again
the key is breaking things down into smaller pieces

• leave it to the end as suggested in the plan of attack (but also leave
yourself time)

• consider where scoring gets incorporated into the game play
– points are scored when the player does a particular action involving a

particular room or item
• choose an ADT that helps you

– points are scored when the player does a particular action involving a
particular room or item, so each time an action happens you need to
determine the number of points, if any, for that action involving that room/item

– start early enough so that you can come to office hours and/or
TFs if you get stuck or want to go over your ideas

