Types of Structures

So far we've seen linear collections —
there's a first, second, third thing. D D D D D

even if we may not have direct access to elements by index

For hierarchical structures, we use trees.

CPSC 225 Intermediate Programming = Spring 2025

Some Applications of Trees

° expression tree
evaluate tree

A tree that represents
the expression

3% ((7+1)/4) + (17 - 5)

The upward pointing

arrows show how the

can be computed.

’
(+)

ofe

CPSC 225: Intermediate Programming + Spring 2025

Oy’

value of the expression

ﬁk answer
12

A

Some Applications of Trees

« directory hierarchy

print out listing of the whole structure (or a portion)
find a file or directory by name

(

IO

«»

Root Directory
ButtonDemo
roject
Users) build.xml nbproject src
components
carol
ButtonDemo.java images
physics english
projtxt foobar myPoem.doc oitgit middle.gil

right.gif

CPSC 225: Intermediate Programming = Spring 2025

Some Applications of Trees

» decision tree
identify

Is it an animal?

[ho |

something e
by > Have Legs? > Can be seen by naked eye?
navigating
through the =
treeto aleaf | . ,.cocomms > Houtshere -

(o] (e]

Spider / Snail Tapeworms / \

— > Have seeds? e
Eat meat?

g
EY
3
a
i
U

CPSC 225: Intermediate Programming + Spring 2025

Tree Terminology Tree Terminology

* root

* childlparent
* ancestor/descendant
parent, parent’s parent, etc / children, children’s children, etc
* sibling
two nodes with the same parent root node

* leaf (or external node) _ 2
node with no children internal nOdes }@
 jnternal node @ @ note that data structure trees are

: : upside down compared to real
node with at least one child leaf nodes trees — root at the top, leaves at

« subtree the bottom
tree whose root is the child of another node

leaves root node

| O
internal nodesl b
® @

roots leaf nodes

CPSC 225: Intermediate Programming + Spring 2025 8 CPSC 225: Intermediate Programming + Spring 2025 https://commons.wikimedia.org/wiki/File:Tree_Transparent_Background.png g

(] -] oo [i L e
two nodes that share the same parent 0% I
a node connected directly below another 0% I
a node's parent, its parent's parent, its parent's parent's parent, and so forth 0% I
a smaller tree that includes a node and all of its descendants 0% I
tne topmst e ot e o | | |) | e e e -~
the node connected directly above another 7 respondents 88% _ v
I ; 5 two nodes that share the same parent 7 respondents s> [N
anode’s children, its children’s children, and so forth 1 respondent 1%]
. . . d ted directly bel th 0*
anode that has no children 0% | W direction is 2 node connecied drectly below anofher |
backwards — a node's parent, its parent's parent, its parent's parent's parent, and so forth 0% |
i i i %
m m m m parent is up, a smaller tree that includes a node and all of its descendants 0 I
towards the root; the topmost node of the tree 0% |
descendants are) "
two nodes that share the same parent 0% I down. towards the the node connected directly above another o I
- PR %
a node connected directly below another 0% I / leaves a node's children, its children’s children, and so forth o I a node with
% "
a node's parent, its parent’s parent, its parent's parent's parent, and so forth 1 respondent 13% . a node that has no children e 13 . no children
a smaller tree that includes a node and all of its descendants @ I is a leaf
the topmost node of the tree 0% I
the node connected directly above another ®= I
anode’s children, its children's children, and so forth 7 respondents =* [N
2 node that has no children o* |
e ——————
e —— e —

CPSC 225: Intermediate Programming + Spring 2025 10 CPSC 225: Intermediate Programming + Spring 2025 11

Tree Terminology

* binary tree
every node has at most two children

aoca Lo
‘two nodes that share the same parent 0% I
a node connected directly below another 0% I
a node’s parent, its parent’s parent, its parent's parent's parent, and so forth 0% I
a smaller tree that includes a node and all of its descendants 7 respondents =* I
the topmost node of the tree 0% I
the node connected directly above another 0% I a subtree also
a node's children, its children’s children, and so forth 1 respondent 13% . includes the root
a node that has no children 0% I of the subtree (the
node itself)
EEEaEEE 3
two nodes that share the same parent 0% |
a node connected directly below another 0% |
anode's parent, its parent's parent, its parent's parent's parent, and so forth 7 respondents 88 % _ v
a smaller tree that includes a node and all of its descendants 0* I
the topmost node of the tree 0% I ancestors include
the node connected directly above another 1 respondent 13% . the parent, but
a node's children, its children’s children, and so forth 0* I EﬂSO more than
a node that has no children @F I that ‘
CPSC 225: Intermediate Programming Spring 2025 12

Proper Binary Trees

Why (proper) binary trees?
* binary trees are a very common type of tree

» proper simplifies the implementation and is not limiting

other binary trees can be realized with dummy leaves (no
element is stored there) — utilize only the internal nodes

* implementation ideas can easily be extended to general
trees

» can implement general trees in terms of binary trees

CPSC 225: Intermediate Programming + Spring 2025

« complete binary tree
every level (except possibly the last) is
completely full
the nodes in the last level are as far left as
possible (no gaps)

sometimes refers to a binary tree where the last
level is completely full

O
@ Q@
O ONERO)
ONOJO,
° proper binary tree
every internal (non-leaf) node has exactly
two children ./i\

CPSC 225: Intermediate Programming « Spring 2025 https://en.wikipedia.org/wiki/Binary_tree 13

Implementing Binary Trees Clr

pointers not drawn)

L ——————————————————
e —
14

« as with linked lists, we need to | ™ D\»
10

first define a tree node type
element ‘

left child, right child —

parent may be omitted if there’s no
need to move up the tree 20

50
class TreeNode {
int itenm; // The data in this node.

TreeNode left; // Pointer to the left subtree.
10 , TreeNode right; // Pointer to the right subtree.
‘ 30 80 90
private instance variables with public 40
M—L constructor(s), getters, setters is preferred
unless the TreeNode class is purely a helper '/_/y
(inner) class
« the tree itself is a root pointer p 70
similar to head for a linked list

CPSC 225: Intermediate Programming + Spring 2025 15

Building Trees

CPSC 225 Intermediate Programming = Spring 2025 18

Working With Trees — Patterns

Working With Trees — Patterns

Three main ways of moving through trees:

* moving up the tree

loop with current node being updated to parent until the root is
reached

* moving down the tree, interested in only one child
loop with current node being updated to child until leaf is
reached

* moving down the tree, interested in both children

recursion (left child and right child), with leaf as base case
if all nodes are visited, this is known as a traversal

(note — these are general patterns; modify specifics like starting
or ending point as needed for a particular task)

CPSC 225: Intermediate Programming = Spring 2025 21

Working With Trees — Patterns

Compute the depth of the specified node. The depth corresponds to the

* pumber of ancestors - the root has depth @ (no ancestors), the children of
* the root have depth 1 (each has one ancestor, the root of the tree), the
* grandchildren of the root have depth 2 (each has 2 ancestors, the parent

* and the parent's parent), and so forth.

am node node
the node
the depth of the node

*/
public static int getDepth (TreeNode node) {

Jex
* Return the leftmost internal node in the tree.

root
the root of the tree
the leftmost internal node

leftmost —

*/
public static TreeNode findLeftmost ({ TreeNode root) {

* moving up the tree
loop with current node being updated to parent until the root is reached

CPSC 225: Intermediate Programming + Spring 2025 2

* moving down the tree, interested in only one child 0 O
loop with current node being updated to child until leaf is reached

CPSC 225: Intermediate Programming + Spring 2025 23

