Working With Trees — Patterns

Three main ways of moving through trees:

* moving up the tree

loop with current node being updated to parent until the root is
reached

* moving down the tree, interested in only one child

loop with current node being updated to child until leaf is
reached

* moving down the tree, interested in both children
recursion (left child and right child), with leaf as base case
if all nodes are visited, this is known as a traversal

(note — these are general patterns; modify specifics like starting
or ending point as needed for a particular task)

CPSC 225 Intermediate Programming = Spring 2025 2

Working With Trees — Patterns

* Print all of the elements contained in internal nodes in the tree. N

root @ @

the root of the tree ‘

*/ O
puf:lic static void printTree (TreeNode root) { @ °
0 ﬂ 0
» moving down the tree, interested in both children O O

recursion (left child and right child), with leaf as base case

e ———————————
e —
27

CPSC 225: Intermediate Programming + Spring 2025

Working With Trees — Patterns

Jee
* Get the height of the tree. The height of a leaf is @, and the height of an
* internal node is one more than the max height of its children. 0 \®
root
the root of the tree |E
the height of the tree G °]
s/
public static int getHeight (TreeNode root) { 0o o a U
g O

* moving down the tree, interested in both children
recursion (left child and right child), with leaf as base case

CPSC 225: Intermediate Programming = Spring 2025 2

Working With Trees — Patterns

Three main ways of traversing trees:
preorder — visit node before children */+5z2-83 742
* inorder — visit node between children 5+2z/8-3*4 "2
postorder — visit node after children 5z+83-/42 "%

All three traversals are special cases
of an Euler tour.
visit, left, visit, right, visit

(((5+2)/(8-3))*(472))

print (on first visit,) on third for internal
nodes

CPSC 225: Intermediate Programming + Spring 2025

o Lo L

visit the left subtree, then the node itself, then the right subtree o% |
visit all the nodes level by level, starting from the root and moving down L |
visit the left subtree, then the right subtree, then the node itself L |
visit the node, then its left subtree, then its right subtree 7 respondents 88 % _ v
visit the right subtree, then the node itself, then the left subtree o* |
visit the right subtree, then the left subtree, then the node itself 0* | the left syt?tree is
visit the node, then its right subtree, then its left subtree 1 respondent 1% [} Egg:t\r/::l:?gdht _
the opposite order
@ is possible but that
doesn’t have a
1,2,5,5,6,7,9,9,11 ox | Lname
511,6,2,7,5,9,9.1 o* |
2,56,11,7,1,9,5.9 ° o |
1.7.2,6,511,9.9,5 7 respondents =* [
59.9.1,11,6,5,7,2 ° ° 0% I
1,7,9.2,6,9,511,5 1 respondent 13* I}
59,511,6,27,9.1 o* |
1,9.9.5,7,6,11,5,2 ° ° ° 0% I
ONOIO
CPSC 225: Intermediate Programming = Spring 2025 29
visit the left subtree, then the node itself, then the right subtree 8 respondents 100% _ v
visit all the nodes level by level, starting from the root and moving down ®= I
visit the left subtree, then the right subtree, then the node itself ®= I
visit the node, then its left subtree, then its right subtree 0% |
visit the right subtree, then the node itself, then the left subtree R |
visit the right subtree, then the left subtree, then the node itself L |
visit the node, then its right subtree, then its left subtree o |
1,2.5.567.9.9.11 o* |
511,6,2,7.59.9.1 o |
2,5,6,11,7,1,9.5.9 0 7 respondents 88% _ v
1,7,2,6,511,9,9,5 0% |
5,9,9,1,11,6,5,7, 2 0 ° 0% |
1,7,9,2,6,9,5,11,5 1 respondent 13% .
5,9,5,11,6,2,7,9, 1 0% |
1,9,9,5,7,6,11,5,2 ° ° ° 0% |
® @
CPSC 225: Intermediate Programming + Spring 2025 31

D Emen

mm Visit the left subtree, then the node itself, then the right subtree 0% I
visit all the nodes level by level, starting from the root and moving down 0% I
visit the left subtree, then the right subtree, then the node itself & respondents 100% _ v
visit the node, then its left subtree, then its right subtree 0% I
visit the right subtree, then the node itself, then the left subtree 0% I
visit the right subtree, then the left subtree, then the node itself 0% I
visit the node, then its right subtree, then its left subtree 0% I
=3
1,2.5,56,7,9.9.11 o% |
511,6,2,7,5,9,9.1 7 =* I
2,56,11,7,1,9.5.9 ° L |
1,7,2,6,511,9,9,5 0% |
59,9,1,11,6,5,7, 2 ° ° 0% |
1,7,9,2,6,9,5,11,5 0% |
5,9,5,11,6,2,7,9,1 0% |
1,9,9,5,7,6,11,5,2 o ° o 1 respondent 13% .

CPSC 225: Intermediate Programming = Spring 2025

Working With Trees — Patterns

* Compute the size of the tree (the number of elements i.e. the number of

* internal nodes).

* @param root
¥ the root of the tree
@return the number of internal nodes in the tree

%

public static int getNumInternal (TreeNode root) {

* moving down the tree, interested in both children

recursion (left child and right child), with leaf as base case

CPSC 225: Intermediate Programming + Spring 2025

