

CPSC 225: Intermediate Programming • Spring 2025 40

Binary Search Trees

• lookup
– moving down, 1-finger (only go to one

child) pattern → loop
– search ends when element is found or

a leaf is reached (element not found)

• insert
– can only insert at a leaf
– the correct insertion point is the leaf where an unsuccessful

search for the element ends up

• remove
– can only remove above a leaf
– if the element to remove does not have at least one leaf child,

swap it with a safe element which does has at least one leaf
child

• i.e. the next element larger or smaller than the one to remove

(dummy leaves not shown)

CPSC 225: Intermediate Programming • Spring 2025 41

Self-Test

insert the elements 30, 61, 80,
50 into the binary search tree
shown – draw the tree after
each insertion

(dummy leaves not shown)

CPSC 225: Intermediate Programming • Spring 2025 42

Self-Test

remove the elements 42, 16,
65, 60 from the binary search
tree shown – draw the tree after
each removal

(dummy leaves not shown)

CPSC 225: Intermediate Programming • Spring 2025 43

Binary Search Trees

• visit all elements in order
– moving down, both children pattern → recursion
– need to visit smaller elements before the current node's element

before the larger elements → inorder traversal

(dummy leaves not shown)

CPSC 225: Intermediate Programming • Spring 2025 45 CPSC 225: Intermediate Programming • Spring 2025 46

Implementing Map/Set

unsorted array or
linked list sorted array sorted linked list

map: insert(key,value)

set: add(elt)

map: remove(key)

set: remove(elt)

map: get(key)

set: contains(elt)

CPSC 225: Intermediate Programming • Spring 2025 47

Implementing Map/Set

unsorted array or
linked list sorted array sorted linked list

the element can be put
anywhere so insert is
fast, but find requires
sequential search of the
entire array/list

can utilize binary search
to quick locate element
or its insertion point, but
must shift on both insert
and remove

no need to shift, but
requires sequential
search to find element
or its insertion point

map: insert(key,value)

set: add(elt)

Θ(1) – put at head
(linked list) or end
(array)

O(n) – O(log n) to find
correct insertion point
but O(n) to shift

O(n) – to find correct
insertion point, then
Θ(1) to insert

map: remove(key)

set: remove(elt)

Θ(n) – to find, then
Θ(1) to remove

O(n) – O(log n) to find
but O(n) to shift

O(n) – to find, then
Θ(1) to remove

map: get(key)

set: contains(elt)

Θ(n) – to find O(log n) – binary
search

O(n) – to find

CPSC 225: Intermediate Programming • Spring 2025 48

Implementing Map/Set

• can store (key,value) pairs in a binary search tree ordered
by key
– let h be the height of the tree
– lookup, insert, remove are all O(h) as it may be necessary to go

from the root all the way down to a leaf
• the loop may repeat up to h times

(only keys are shown;
dummy leaves not shown)

height h = 5

CPSC 225: Intermediate Programming • Spring 2025 49

Implementing Map/Set

unsorted array
or linked list sorted array sorted linked

list
binary search

tree

the element can be
put anywhere so
insert is fast, but
find requires
sequential search
of the entire
array/list

can utilize binary
search to quick
locate element or
its insertion point,
but must shift on
both insert and
remove

no need to shift,
but requires
sequential search
to find element or
its insertion point

loop from root to
leaf

map:
insert(key,value)

set: add(elt)

Θ(1) – put at head
(linked list) or end
(array)

O(n) – O(log n) to
find correct
insertion point but
O(n) to shift

O(n) – to find
correct insertion
point, then Θ(1)
to insert

O(h) – to find
correct insertion
point, then Θ(1)
to insert

map:
remove(key)

set: remove(elt)

Θ(n) – to find,
then Θ(1) to
remove

O(n) – O(log n) to
find but O(n) to
shift

O(n) – to find,
then Θ(1) to
remove

O(h) – to find and
then find element
to swap with, then
then Θ(1) to swap
and remove

map: get(key)

set: contains(elt)

Θ(n) – to find O(log n) – binary
search

O(n) – to find O(h) – to find

CPSC 225: Intermediate Programming • Spring 2025 50

BST Height

• height of a binary search tree
containing n elements

– shortest possible tree has height
O(log n)

• this means that doubling the number of
nodes only increases the height of the
tree by 1

– tallest possible tree has height O(n)
• one element per level of the tree

(dummy leaves not shown)

CPSC 225: Intermediate Programming • Spring 2025 51

Balanced BSTs

• using a BST to store the elements in
a Map or Set is faster than an array
or linked list for most operations as
long as the tree is more like this
than this

• whether a BST with a given number of
elements is shorter or taller depends on the
order of insertions and removals, not the
elements in the tree

• can do some extra structural rearrangement
as part of insert and remove (and
possibly lookup) to keep the
height from becoming too
large → balanced BST
– O(log n) lookup,

insert, remove
CPSC 225: Intermediate Programming • Spring 2025 52

Implementing Map/Set

unsorted array
or linked list

sorted linked
list

sorted array balanced BST

the element can
be put anywhere
so insert is fast,
but find requires
sequential search
of the entire
array/list

can utilize binary
search to quick
locate element or
its insertion point,
but must shift on
both insert and
remove

no need to shift,
but requires
sequential search
to find element or
its insertion point

loop from root to
leaf + rebalancing
as needed after
operation

map:
insert(key,value)

set:
add(elt)

Θ(1) – put at
head (linked list)
or end (array)

O(n) – O(log n) to
find correct
insertion point
but O(n) to shift

O(n) – to find
correct insertion
point, then Θ(1)
to insert

Θ(log n)

map:
remove(key)

set:
remove(elt)

Θ(n) – to find,
then Θ(1) to
remove

O(n) – O(log n) to
find but O(n) to
shift

O(n) – to find,
then Θ(1) to
remove

Θ(log n)

map:
get(key)

set:
contains(elt)

Θ(n) – to find O(log n) – binary
search

O(n) – to find Θ(log n)

CPSC 225: Intermediate Programming • Spring 2025 54

Implementing PriorityQueue

Consider using a binary search tree to store the elements in
a priority queue –

• how would you carry out the insert, remove smallest, and
retrieve smallest operations?

• in terms of efficiency, how does using a BST compare to
using a sorted or unsorted array or linked list?

unsorted array
or linked list

sorted linked
list

sorted array balanced BST

insert

remove
smallest

retrieve
smallest

CPSC 225: Intermediate Programming • Spring 2025 55

Implementing PriorityQueue

Consider using a binary search tree to store the elements in
a priority queue –

• how would you carry out the insert, remove smallest, and
retrieve smallest operations?

• in terms of efficiency, how does using a BST compare to
using a sorted or unsorted array or linked list?

unsorted array
or linked list

sorted linked
list sorted array balanced BST

insert
Θ(1) – put at head
(linked list) or end
(array)

O(n) – to find
correct insertion
point, then Θ(1) to
insert

O(n) – O(log n) to
find correct
insertion point but
O(n) to shift

Θ(log n)

remove
smallest

Θ(n) – to find, then
Θ(1) to remove

Θ(1) – at head

Θ(1) – with a
circular array so
that shifting can
be avoided

Θ(log n) – leftmost
internal node

retrieve
smallest Θ(n) – to find Θ(1) Θ(1) Θ(log n) – leftmost

internal node

CPSC 225: Intermediate Programming • Spring 2025 56

Implementing Lookup

• with an unsorted array, linked list, or tree, we might have
to look at all of the elements – O(n)
– we do have to look at all of them if our element isn't present

• with a sorted linked list, we might have to look at all of the
elements – O(n)
– but we can potentially stop early if the element isn't present

• with a sorted array or (balanced) binary search tree, we
only have to look at O(log n) elements

• can we only have to look at O(1) elements…?

