The Big Picture

object-oriented programming is meant to reflect the
Inheritance structure of things in the real world
objects correspond to individual things

classes correspond to kinds of things

in the real world, different kinds of things are not always
completely unrelated
e.g. apples and fruit — apples are a kind of fruit, though there is
fruit that's not apples

e.g. savings accounts and checking accounts are both kinds of
bank accounts (and there may be other kinds of bank accounts)

inheritance is the mechanism by which we can express
“is-a” relationships between classes

polymorphism is the mechanism by which we can write
code that works with things related by an “is-a”

relationship
Preliminary Scrabble Design Inheritance and Polymorphism
class represents stored info methods
HumanPlayer one of the people playing current score take tum (choose tiles and Two purposes —
the game player's rack play word — prompt user
for choices) g o . .
ComputerPlayer a computer player current score take turn (choose tiles and to Capture an is-a relatlonShlp that IS natura”y present
player's rack play word) human and computer players are both kinds of players, and it
should be possible to treat them the same way
Observations — use inheritance
HumanPlayer and ComputerPlayer have the same . o
stored info and the same methods to create flexible code that can work with different
differences are only in the bodies of those methods versions of something (even versions not yet created)
HumanPlayer and ComputerPlayer are different kinds of our Scrabble main program should care only that a player can

make a move — how that move is decided on is irrelevant to the
functioning of the rest of the program

use polymorphism — encapsulate what varies and code to the
interface

the same sort of thing (a player)

If our goal is that the program organization reflect the real-
world structure, we should capture this.

CPSC 225: Intermediate Programming + Spring 2025 3 CPSC 225: Intermediate Programming + Spring 2025

~



Inheritance

Inheritance

Which of the following is the most accurate analogy?
A subclass is to a superclass as
the apple on my
"apple” is to the apple sitting on my desk @ I desk is a specific
"fruit" is to the apple sitting on my desk (1) I instance while fruit
. is a kind of thing —
the apple sitting on my desk is to "apple” 0% | / s kind ol 7
the apple sitting on my desk s to "fruit" 2 respondents 20% - object to a class
"apple" is to "fruit" 7 respondents 70% _ v
"fruit" is to "apple” 1 respondent 10% . EpaEE
"apple” is to "orange" 0% I reversed — subclass
"vegetable" is to "fruit" (D)= I is the more specific
thing (apple),

superclass is the
more general thing
(fruit)

CPSC 225 Intermediate Programming = Spring 2025

Inheritance

Subclasses —

* can add new elements (instance variables and methods)
a new method has a different header (hame and/or number/type
of parameters)

* can redefine (override) or extend methods
same header, new body
to extend, also invoke superclass version

* must define one or more constructors (in most cases)

constructor should first call superclass constructor, then initialize
only the instance variables for its own class

» cannot redefine instance variables

* cannot remove instance variables or methods already
defined

CPSC 225: Intermediate Programming + Spring 2025 7

e —
e —
5

* inheritance defines an “is-a” relationship between classes

public class Apple extends Fruit {
}

an apple is a (kind of) fruit

» subclasses inherit everything — instance variables and
methods — except constructors
even private things, though they cannot be accessed directly

new access modifier: protected allows only the class and its
subclasses to access

CPSC 225: Intermediate Programming = Spring 2025



