

Inheritance

CPSC 225: Intermediate Programming • Spring 2025 2

The Big Picture

• object-oriented programming is meant to reflect the
structure of things in the real world
– objects correspond to individual things
– classes correspond to kinds of things

• in the real world, different kinds of things are not always
completely unrelated
– e.g. apples and fruit – apples are a kind of fruit, though there is

fruit that's not apples
– e.g. savings accounts and checking accounts are both kinds of

bank accounts (and there may be other kinds of bank accounts)

• inheritance is the mechanism by which we can express
“is-a” relationships between classes

• polymorphism is the mechanism by which we can write
code that works with things related by an “is-a”
relationship

CPSC 225: Intermediate Programming • Spring 2025 3

Preliminary Scrabble Design

Observations –
• HumanPlayer and ComputerPlayer have the same

stored info and the same methods
– differences are only in the bodies of those methods

• HumanPlayer and ComputerPlayer are different kinds of
the same sort of thing (a player)

If our goal is that the program organization reflect the real-
world structure, we should capture this.

class represents stored info methods

HumanPlayer one of the people playing
the game

current score
player's rack

take turn (choose tiles and
play word – prompt user
for choices)

ComputerPlayer a computer player current score
player's rack

take turn (choose tiles and
play word)

CPSC 225: Intermediate Programming • Spring 2025 4

Inheritance and Polymorphism

Two purposes –

• to capture an is-a relationship that is naturally present
– human and computer players are both kinds of players, and it

should be possible to treat them the same way
– use inheritance

• to create flexible code that can work with different
versions of something (even versions not yet created)
– our Scrabble main program should care only that a player can

make a move – how that move is decided on is irrelevant to the
functioning of the rest of the program

– use polymorphism – encapsulate what varies and code to the
interface

CPSC 225: Intermediate Programming • Spring 2025 5

Inheritance

the apple on my
desk is a specific
instance while fruit
is a kind of thing –
comparing an
object to a class

the analogy is
reversed – subclass
is the more specific
thing (apple),
superclass is the
more general thing
(fruit)

CPSC 225: Intermediate Programming • Spring 2025 6

Inheritance

• inheritance defines an “is-a” relationship between classes

 public class Apple extends Fruit {
 …
 }

– an apple is a (kind of) fruit

• subclasses inherit everything – instance variables and
methods – except constructors
– even private things, though they cannot be accessed directly
– new access modifier: protected allows only the class and its

subclasses to access

CPSC 225: Intermediate Programming • Spring 2025 7

Inheritance

Subclasses –

• can add new elements (instance variables and methods)
– a new method has a different header (name and/or number/type

of parameters)

• can redefine (override) or extend methods
– same header, new body
– to extend, also invoke superclass version

• must define one or more constructors (in most cases)
– constructor should first call superclass constructor, then initialize

only the instance variables for its own class

• cannot redefine instance variables

• cannot remove instance variables or methods already
defined

