

CPSC 225: Intermediate Programming • Spring 2025 158

Adventure

• handin should have three elements – class design,
pseudocode, plot

– if you missed any of these elements, you are strongly
encouraged to come to office hours to discuss your ideas in
order to make sure you are on the right track

CPSC 225: Intermediate Programming • Spring 2025 159

Adventure

• make sure you are aware of the specifications for the
game engine vs extras

– your program must support the specifications given
• (only) the commands listed in the handout
• tasks (only) involve taking or dropping items and/or visiting rooms
• winning the game means accumulating some number of points and

moving to the goal/exit room

– get the required version working before adding extras
• make substitutions to accomplish the spirit of what you want to do within

the specified framework
– e.g. using an item – substitute dropping the item in a specific room
– e.g. unlocking/revealing rooms – substitute dropping a key or other item in the

room without requiring a particular sequencing of actions
– e.g. fighting/defeating enemies – substitute dropping weapons or other items

in particular rooms

– any extras should add on – do not replace the specified
elements with an alternate version

• must still support the specifications (including the commands) given!
• discuss your ideas with me if in doubt

CPSC 225: Intermediate Programming • Spring 2025 160

Adventure

• tasks and winning
– the objective of the game is to accumulate a certain number of points and

then move to a particular goal/exit room – be sure to include this in your plot!

– points are accumulated by dropping items in a particular room or visiting a
particular room

• can add or substitute taking an item instead of dropping, but at least one task needs to
involve taking or dropping an item

• drop/take tasks are intended to reflect the desired end location of the item – in a particular
room if dropped, in the inventory if taken – so points should be removed if the player undoes
the task

• tasks can only be completed once for points (no additional points for repeated visits, points
removed if drop/take undone)

– to require the player to complete all of the tasks in order to win, make the
points required to win to be the total of the points for all of the tasks

CPSC 225: Intermediate Programming • Spring 2025 161

Adventure

Class design –

• missing elements / things to be sure to address
– the world

• how are the north/south/east/west connections between rooms stored?

– whether or not a room has been discovered
• only display the short description when entering a previously-visited room

– tasks/scoring
• how do you keep track of the various tasks to be completed, what has

been completed, etc?

• placement of methods
– methods go in the class whose instance variables they need or

manipulate, not with the subject of the sentence
• e.g. the player does lots of things, but only methods that deal with
Player’s instance variables belong in the Player class

– methods should fit wholly with the purpose and job of the class
• e.g. TAKE involves removing the item from the room and adding it to the

player’s inventory – Room and Player will need methods to remove and
add the item, respectively, but the code to carry out the whole TAKE
action doesn’t belong in either class

CPSC 225: Intermediate Programming • Spring 2025 162

Adventure

Class design –

• separation of concerns

– the user interface is separate from the code carrying out the
actions the user has specified

• there can be different user interfaces which support the same actions, or
different ways to specify an action within the same UI

– reflect this in your design by putting separate concerns in
separate classes (or at least methods)

• for a text-based program, the main program can handle the UI (getting
commands from the user)

• have methods (private helpers or methods in another class)
corresponding to each of the game commands – GO, TAKE, DROP, etc

– the main game loop in main reads a command, figures out which command it
is and the relevant additional info, and calls a method to carry out that action

CPSC 225: Intermediate Programming • Spring 2025 163

Adventure

Pseudocode –

• pseudocode should be structured like code, not a TODO
list

•

•

•

• start broad, then refine far enough to be
able to complete your class design
– e.g. for handle the command –

–

initialize the world
repeat until the game is over
 get a command from the user
 handle the command
if win, display congratulatory message
otherwise display consolation message

if GO or MOVE then
 if there’s a room in that direction from the current room,
 move to that room
 if the room has been visited already,
 display the short description
 otherwise
 display the long description (including exits)
 display the room’s contents
 visit the room

else if …

need the current room

Room needs an isRoom(dir)
method

need to update the current
room

Room needs a isVisited()
method

Room needs getters or print
methods for the short
description, long description,
and exits

Room needs a getter or print
method for displaying the
contents

Room needs a setVisited()
method

CPSC 225: Intermediate Programming • Spring 2025 164

Adventure

Data structures and organization –

• choose appropriate collection types (and underlying
implementations)
– arrays are convenient for fixed-size collections (no add or

remove)
– choose List, Stack, Queue, Set for variable-sized collections

depending on access needs
– choose Map for lookup tasks (key-value pairs)

• for storing rooms (in the world) and items (in the
inventory, room contents), do you store the name of the
room/item or the object itself?
– consider what is most convenient for how you need to access

things in the code

