

CPSC 225: Intermediate Programming • Spring 2025 30

Multiple Inheritance

public class Bat
 extends Mammal, FlyingThing {
 …
}

public class Bat
 extends FlyingThing {
 …
}

public class Swallow
 extends FlyingThing {
 …
}

public class AnimalBat {
 …
}

public class BaseballBat {
 …
}

CPSC 225: Intermediate Programming • Spring 2025 31

Multiple Inheritance

to reflect this, we might want
public class Bat
 extends Mammal, FlyingThing {
 …
}

but the specific semantics of extends creates some problems because
classes, even abstract classes, can have instance variables and method
bodies –

what if Mammal has an instance variable String type_ and FlyingThing has
an instance variable int type_? Bat inherits both, but you can't have two
variables with the same name and different types

Java avoids this problem by providing interfaces and not allowing multiple
inheritance

something may belong to more than one
category – a bat (the creature) is both a
kind of mammal and a kind of flying thing

CPSC 225: Intermediate Programming • Spring 2025 32

Interfaces

If a type is defined only by the existence of certain method
headers – no storage of information, no method bodies –
you can define an interface instead of an abstract class.

Why an interface instead of an abstract class?
• a class can implement multiple interfaces but can only

extend one class
– this avoids ambiguity about which method body to use should

different bodies for the same method header be inherited from
different places

CPSC 225: Intermediate Programming • Spring 2025 33

Interfaces – Defining

• interfaces address the desire for multiple inheritance
– supports polymorphism but not code reuse

• syntax
– public interface InterfaceName { … }
–

– public returntype methodname (paramlist);
• like an abstract method in that no body is supplied, but abstract

keyword is not needed
–

– cannot have instance variables, constructors, or methods with
bodies

• semantics
– an interface defines a type

• the type can be used anywhere a type is needed e.g. in variable and
parameter declarations or as the base type of an array

– it is not possible to create instances of an interface type
• no new … for an interface

CPSC 225: Intermediate Programming • Spring 2025 34

Interfaces – Implementing

• classes implement interfaces

• syntax
– public class ClassName
 implements Interface1, Interface2, … { … }

• a class can implement any number of interfaces (it can also extend
another class)

• the class must provide a body for every method in the interface(s) or else
it must be declared abstract

• semantics
– an object of a type implementing an interface can be used

anywhere the interface type is expected
• e.g. Interface1 obj = new ClassName();

CPSC 225: Intermediate Programming • Spring 2025 35

Abstract Classes
vs Interfaces

both

abstract
class

neither

both

both

interface

CPSC 225: Intermediate Programming • Spring 2025 36

Example

Things that are like eagles can fly and hunt.
Things that are like lions can run and hunt.

Eagles are, of course, eagle-like.
Lions are, of course, lion-like. They can also roar, which is not
necessarily true of everything which is like a lion.
A griffin is like both eagles and lions. It can also guard treasure.

• define types (classes, abstract classes, and/or interfaces) to
capture the relationships and behavior described

CPSC 225: Intermediate Programming • Spring 2025 37https://en.wikipedia.org/wiki/Java_collections_framework#/media/File:Java.util.Collection_hierarchy.svg

HashSet

CPSC 225: Intermediate Programming • Spring 2025 38https://en.wikipedia.org/wiki/Java_collections_framework#/media/File:Java.util.Map_hierarchy.svg CPSC 225: Intermediate Programming • Spring 2025 39

CPSC 225: Intermediate Programming • Spring 2025 40

