Nested Classes

* some classes exist only to help out with the
implementation of another class

e.g. DoubleListNode is used only within SolitaireDeck

* a nested class is a class defined inside another class

static nested class

inner class — a non-static nested class
anonymous inner class — unnamed inner class
local class — class defined within a method

« technically nested classes can be public

typically most appropriate for a nested interface or abstract class
rather than a concrete class in order to maintain encapsulation
and information hiding

CPSC 225! Intermediate Programming « Spring 2025 42

Semantics

- static means there is only one copy shared by all
instances of that type

* non-static means there is a separate copy per object

Outer

public class Outer {

D a static int a , b ;
_ int ;
funcl() S
D b static void funcl () { .. }
void func2 () { .. }

}

static variables a , b _are shared by obj1 and obj2
. . static method funcl() can only accessa , b
obj1, obj2 have their own copies of non-static
variable x_
obj1, obj2 have their own copies of non-static

objl obj2 method func2() which can access a , b_, and their
own copy of x_

CPSC 225! Intermediate Programming + Spring 20:

Syntax — Declaration

- static nested class public class Outer {
static private class Nested {
}
}
* inner class public class Outer {
private class Inner {
}
}
CPSC 225: Intermediate Programming » Spring 2025 43

public class Outer {
Outer static int a , b ;
int x_;
static void funcl () { .. }
void func2 () { .. }

static class Nested {
static int c_;
int y_;

static void func3 () { .. }
void func4 () { .. }

objla, objlb, obj2a, obj2b share static variable c_ and static method func3()
static method func3() can only accessa , b , c

objla, objlb, obj2a, obj2b have their own copies_of non-static variable y_and
non-static method func4() which can access a_, b_, c_, and their own copies of y_

public class Outer {
static int a_, b_;
int x_;
static void funcl () { .. }
void func2 () { .. }

class Inner {
static int c_;
int y ;
static void func3 () { .. }
void func4 () { .. }

}
} Outer

= fmai)

objla, objlb, obj2a, obj2b share static
variable c_ and static method func3()
static method func3() can only access
a,b ,c

objla, objlb, obj2a, obj2b have their
own copies of non-static variable y_and
non-static method func4() which can .
accessa_, b, c_, objl'sorobj2’s copy of obj2
X _, and their own copies of y

Semantics

* nested classes have access to instance variables and
methods in the containing class
— even private ones!

* the containing class has access to instance variables and
methods in the nested class
— even private ones!

CPSC 225 Intermediate Programming + Spring 2025

Outer

Nested

Oe.
O

A e static means there is only one copy

static void funcl () { - }
void func2 () { = }

static class Nested {
static int c_;

shared by all instances of that type

— can be used outside the containing
class with the syntax Outer.Nested

;;g;i%u;g;d(;uzci (-3 — can be used inside any methods of

the containing class to create objects
— can access only static members of
the containing class
— containing class can access only

static members of the contained
class

public class Outer {

static int a, b ;
int x ;

static void funcl () { . }
void func2 () { .. }

class Inner {
static int ¢ ;
inty;

static void func3 () { - }
void funca () { ..}
}

b Outer

o)

b_

non-static means there is a
separate copy per object

— can be used outside the containing
class with the syntax obj .Inner

— can only be used inside non-static
methods of the containing class to
create objects

— can access any members of the
containing class

— containing class can only access

static members of the contained
class

CPSC 225: iate Programn{

can be used inside static methods of the
containing class to create objects

can be used inside non-static methods of the
containing class to create objects

can be used outside the containing class with
the syntax ContainingClass.InsideClass

can be used outside the containing class with
the syntax obj.InsideClass

can be public
can be private

can access static members of the containing
class

can access non-static members of the
containing class

can access private members of the containing
class

containing class can access its static members

containing class can access its non-static
members

containing class can access its private
members

static nested

both

static nested

inner

both

both

both

inner

both

both

neither

both

Guidelines

« static nested class or inner class?

prefer a static nested class unless it needs to access non-
static members of the containing class

* just because you have can do something doesn’t mean
you need to
treat nested classes like other classes — unless the class is
purely a collection of variables with only getters/setters, avoid
direct access to the nested class instance variables
* provide getters, setters, and other methods as needed

limit public exposure of nested classes — don’t break
encapsulation!

* limit nested classes to short helper classes

you could make every class a nested class in the main program,
but that makes the main class very long and prevents reuse of
any of the classes

for longer classes that are specialized to the project rather than .

one class, use packages and package access

public class SolitaireDeck {

private DoubleListNode deck_;
private int size_;

private class DoubleListNode {

private SolitaireCard card ; // the card
private DoubleListNode next , prev ; // next and previous nodes

private DoubleListNode (SolitaireCard card) {
card_ = card;
next_ = null;
prev_ = null;

private DoubleListNode (SolitaireCard card, DoubleListNode prev,
DoubleListNode next)} {
card_ = card;
prev_ = prev;
next_ = next;

}

}

public SolitaireDeck (int size) {

size = size;

deck = new DoubleListNode(new SolitaireCard(1)); : e i
y e DoublngstNodg is just a o
collection of variables, so it is

possible to dispense with the

getters and setters

(keep the constructors for
convenience)

CPSC 225 Intermediate Programming + Spring 2025

i6

58

Examples

» purely internal helper class
DoubleListNode in SolitaireDeck

 helper class with some public exposure
TreeNode in BinaryTree

CPSC 225 Intermediate Programming « Spring 2025

“ A proper binary tree (i.e. every internal node has exactly two children).

-
public class BinaryTree {

private TreeNode root_;

private int size ;

-

* Create a new binary tree with one node.

.
public BinaryTree () {

root_ = new TreeNode(this);
size =1;
}

Jes
* Create a new binary tree with one node st

element
the element to be stored in the i

-

public BinaryTree (int element) {
root_ = new TreeNode(element,this);
size_=1;

1

-

* Get the root of the tree.

the root of the tree

>
public Node getRoot () {
return root_;

CPSC 225! Intermediate Programming + Spring 2025

e
* Get the parent of a node.

node
the node (the node must belong to this tree, and not be null or
the root)

the parent of the node

-
public Node getParent (Node node) {
TreeNode treenode = checkNode(node);
if (node == root) {
throw new IllegalArgunentException(“cannot get the parent *
+ "of the root");
}

return treenode.parent_;

-
* Get the left child of a node.

node
the node (the node must belong to this tree, and not be null or a
leaf)

the left child of the node

%y
public Node getleftChild (Node node) {
TreeNode treenode = checkNode(node);
if (isLeaf(node)) {
throw new IllegalArgumentException(”cannot get the child " + "of a leaf");

}

return treenode.left ;

* An abstraction of the idea of a node in a tree, allowing for different
* implementations of the tree (e.g. linked structure or array). Outside the
* tree, the only thing one can do with a node is access its element.

public interface Node {

Jer
* Retrieve the element stored in this position.

* @return element stored in this pesition
*/
public int getElement ();

we need a public Node type because
BinaryTree operations need to take
and return nodes, but the tree
structure itself should be encapsulated
within BinaryTree

the solution is to make Node a public
interface with limited operations - just
getElement() —and a private
TreeNode class that implements that
interface

- a TreeNode object is returned from
BinaryTree but since the caller can
only see it as the declared type - Node
- they can’t access its internals

both Node and TreeNode are inner
classes in BinaryTree

* A node of the tree.

private class TreeNode implements Node {

private int element_;

private TreeNode parent ;
private TreeNode left , right ;

private BinaryTree tree ;

private TreeNode (BinaryTree tree) {
tree_ = tree;
parent = null;
left = null;
right_ = null;

private TreeNode (int element, BinaryTree tree) {
element_ = element;
tree_ = tree;

parent_ = null;
left = null;
right_ = null;
}
@override

public int getElement () {
return element_;
}

public class BTDemo {
public static void main (String[] args) {

// create a tree with 20 at the root
BinaryTree tree = new BinaryTree(20);

// add 18 and 5 as the children of 20
BinaryTree.Node root = tree.getRoot(); //
tree.expandLeaf (root,10,5);

BinaryTree.Node left = tree.getleftChild(root); // the node with 10

// add 16 and 8 as the children of 16
tree.expandLeaf (left,16,8);

// add dummy nodes (no elements) as the children of 5 and 16

tree.expandLeaf (tree.getRightChild(root))
tree.expandLeaf (tree.getLeftChild(left));

// add 7 as the left child of 8 (and a dummy node as the right child)
BinaryTree.Node leftright = tree.getRightChild(left); // the node with &

tree.expandLeaf (leftright);

tree.setElement(tree.getleftchild(leftright),7);

the node with 20

// add dummy nodes (no elements) as the
tree.expandLeaf (tree.getleftChild(leftr

using BinaryTree

CPSC 225: i ing * Spring 2025

* Return the leftmost internal node in the tree.
* @param tree
N the tree (size » 1)

* @return the leftmost internal node

n/
public static BinaryTree.Node findLeftmost (BinaryTree tree) {
if (tree.getsize() <= 1) {

throw new IllegalArgumentException(“tree must have more than one node;

+ tree.getSize());

}

// pattern: moving down the tree, interested in only one child

BinaryTree.Node current = tree.getRoot();

for (; ltree.isleaf(tree.getleftChild(current)) ;) {
current = tree.getLeftChild(current);

}

return current;

size "

