

CPSC 225: Intermediate Programming • Spring 2025 42

Nested Classes

• some classes exist only to help out with the
implementation of another class
– e.g. DoubleListNode is used only within SolitaireDeck

• a nested class is a class defined inside another class
– static nested class
– inner class – a non-static nested class
– anonymous inner class – unnamed inner class
– local class – class defined within a method

• technically nested classes can be public
– typically most appropriate for a nested interface or abstract class

rather than a concrete class in order to maintain encapsulation
and information hiding

CPSC 225: Intermediate Programming • Spring 2025 43

Syntax – Declaration

• static nested class

• inner class

public class Outer {

 static private class Nested {
 …
 }

 …
}

public class Outer {

 private class Inner {
 …
 }

 …
}

CPSC 225: Intermediate Programming • Spring 2025 45

• static means there is only one copy shared by all
instances of that type

• non-static means there is a separate copy per object

Semantics

a_

b_

x_

Outer

obj1

static variables a_, b_ are shared by obj1 and obj2
static method func1() can only access a_, b_

obj1, obj2 have their own copies of non-static
variable x_
obj1, obj2 have their own copies of non-static
method func2() which can access a_, b_, and their
own copy of x_

public class Outer {
 static int a_, b_;
 int x_;

 static void func1 () { … }
 void func2 () { … }
}

func1()

x_

obj2

func2() func2()

CPSC 225: Intermediate Programming • Spring 2025 47

public class Outer {
 static int a_, b_;
 int x_;

 static void func1 () { … }
 void func2 () { … }

 static class Nested {
 static int c_;
 int y_;

 static void func3 () { … }
 void func4 () { … }
 }
}

a_

b_

x_

Outer

obj1

Nested

c_

y_

obj1a obj1b

obj1a, obj1b, obj2a, obj2b share static variable c_ and static method func3()
static method func3() can only access a_, b_, c_
obj1a, obj1b, obj2a, obj2b have their own copies of non-static variable y_ and
non-static method func4() which can access a_, b_, c_, and their own copies of y_

func1()
func3()

y_
x_

obj2

y_

obj2a obj2b

y_

func2() func2()
func4() func4() func4() func4()

CPSC 225: Intermediate Programming • Spring 2025 49

public class Outer {
 static int a_, b_;
 int x_;

 static void func1 () { … }
 void func2 () { … }

 class Inner {
 static int c_;
 int y_;

 static void func3 () { … }
 void func4 () { … }
 }
}

a_

b_

Outer

obj1a, obj1b, obj2a, obj2b share static
variable c_ and static method func3()
static method func3() can only access
a_, b_, c_
obj1a, obj1b, obj2a, obj2b have their
own copies of non-static variable y_ and
non-static method func4() which can
access a_, b_, c_, obj1’s or obj2’s copy of
x_, and their own copies of y_

func1()

x_

obj1

y_

obj1a

obj1b

y_

func2()
func4()

func4()

Inner

c_ func3()

x_

obj2

y_

obj2a

obj2b

y_

func2()
func4()

func4()

Inner

c_ func3()

CPSC 225: Intermediate Programming • Spring 2025 53

• static means there is only one copy
shared by all instances of that type
– can be used outside the containing

class with the syntax Outer.Nested
– can be used inside any methods of

the containing class to create objects
– can access only static members of

the containing class
– containing class can access only

static members of the contained
class

• non-static means there is a
separate copy per object
– can be used outside the containing

class with the syntax obj.Inner
– can only be used inside non-static

methods of the containing class to
create objects

– can access any members of the
containing class

– containing class can only access
static members of the contained
class

CPSC 225: Intermediate Programming • Spring 2025 54

Semantics

• nested classes have access to instance variables and
methods in the containing class
– even private ones!

• the containing class has access to instance variables and
methods in the nested class
– even private ones!

CPSC 225: Intermediate Programming • Spring 2025 55

CPSC 225: Intermediate Programming • Spring 2025 56

Guidelines

• static nested class or inner class?
– prefer a static nested class unless it needs to access non-
static members of the containing class

• just because you have can do something doesn’t mean
you need to
– treat nested classes like other classes – unless the class is

purely a collection of variables with only getters/setters, avoid
direct access to the nested class instance variables

• provide getters, setters, and other methods as needed
– limit public exposure of nested classes – don’t break

encapsulation!

• limit nested classes to short helper classes
– you could make every class a nested class in the main program,

but that makes the main class very long and prevents reuse of
any of the classes

– for longer classes that are specialized to the project rather than
one class, use packages and package access CPSC 225: Intermediate Programming • Spring 2025 57

Examples

• purely internal helper class
– DoubleListNode in SolitaireDeck

• helper class with some public exposure
– TreeNode in BinaryTree

CPSC 225: Intermediate Programming • Spring 2025 58

DoubleListNode is just a
collection of variables, so it is
possible to dispense with the
getters and setters

(keep the constructors for
convenience)

CPSC 225: Intermediate Programming • Spring 2025 59

CPSC 225: Intermediate Programming • Spring 2025 60

we need a public Node type because
BinaryTree operations need to take
and return nodes, but the tree
structure itself should be encapsulated
within BinaryTree

the solution is to make Node a public
interface with limited operations – just
getElement() – and a private
TreeNode class that implements that
interface
 – a TreeNode object is returned from
BinaryTree but since the caller can
only see it as the declared type – Node
– they can’t access its internals

both Node and TreeNode are inner
classes in BinaryTree CPSC 225: Intermediate Programming • Spring 2025 61

using BinaryTree

