

CPSC 225: Intermediate Programming • Spring 2025 68

Implementing Recursion

Always via a method – what makes it recursive is calling
itself.

Body always contains an 'if' statement to handle base
case(s) plus the recursive case(s).

The recursive call works exactly like calling any other
method.
• pass input to caller via parameters
• pass output back from call via return value
Local variables in the method are not accessible elsewhere, even
from another call of the same method.
Instance variables are shared by calls of recursive methods, but
this can lead to confusion – avoid having “global” state.

CPSC 225: Intermediate Programming • Spring 2025 69

Self Test

• factorial
 n! = n (n-1)!
 1! = 1

• fibonacci
 fib(n) = fib(n-1)+fib(n-2)
 fib(2) = 1
 fib(1) = 1

• exponentiation
 a0 = 1
 an = (an/2)(an/2) if n is even
 an = a(an-1) if n is odd

• implement each of these
definitions as a Java function
which returns the desired value

CPSC 225: Intermediate Programming • Spring 2025 71

The “Magic” of Recursion

Recursion can look like magic – when is all the work getting
done?
• It is spread out, not non-existent!

 public static int fib (int n) {
 if (n == 1 || n == 2) { return 1; }
 else { return fib(n-1)+fib(n-2); }
 }

CPSC 225: Intermediate Programming • Spring 2025 72

The “Magic” of Recursion

Correctness is established by induction.
• explain why the base case answer is correct
• assume that the smaller problems are solved correctly,

and explain why the larger problem is thus solved
correctly

Only need to consider one level at a time!

 public static int fib (int n) {
 if (n == 1 || n == 2) { return 1; }
 else { return fib(n-1)+fib(n-2); }
 }

base cases are
correct: the
sequence
starts with 1 1

recursive case is correct: by definition,
the next fibonacci number is the sum of
the previous two

CPSC 225: Intermediate Programming • Spring 2025 73

Another Pattern

• for any method, parameters are used to pass the method
values it needs to work with

• if the friends need more information than the original call,
create a private helper method with the necessary
parameters to handle the recursion

CPSC 225: Intermediate Programming • Spring 2025 74

Another Pattern
/**
 * Print the tree, indenting to show the depth of each element.

 * @param root the root of the subtree to print
 */
public void print (TreeNode root) {
 print(root,””);
}

/**
 * Print the subtree rooted at the specified node, indenting to show
 * the depth of each element.

 * @param node root of the subtree to print
 * @param indent amount of indentation for this level of the tree
 */
private void print (TreeNode root, String indent) {
 if (root.getLeft() == null) { // leaf
 System.out.println(indent+root.getElement());
 } else {
 System.out.println(indent+root.getElement());
 print(root.getLeft(),indent+” “);
 print(root.getRight(),indent+” “);
 }
}

the amount to indent this
level – difficult for this
method to know for itself, but
easy for the caller to pass

CPSC 225: Intermediate Programming • Spring 2025 77

Recursion as a Technique

Recursion is also at the core of two powerful problem-
solving strategies –
• divide-and-conquer

– utilize abstraction – have one or more friends solve smaller
versions of the problem for you, and you use those answers to
solve your problem

– examples
• e.g. towers of hanoi
• e.g. quicksort

• recursive backtracking
– leverage tree traversal to enumerate all possible combinations of

a series of choices without having to deal with the explosion-of-
fingers problem

– examples
• e.g. n queens
• e.g. making change

CPSC 225: Intermediate Programming • Spring 2025 78

Divide-and-Conquer

• divide-and-conquer
– break the task up into one or more smaller instances of the same

task
– have friends solve the smaller instances
– use those solutions to solve the original problem

• towers of hanoi
– move n disks from one peg to another
– only one disk can be moved at a time
– a larger disk cannot be stacked on top of

a smaller disk
– solution – move n disks from peg a to peg b using peg c as a spare

• move n-1 disks from peg a to peg c (using peg b as a spare)
• move nth disk from peg a to peg b
• move n-1 disks from peg c to peg b (using peg a as a spare)

recursive
calls

CPSC 225: Intermediate Programming • Spring 2025 79

Divide-and-Conquer

• sorting
– arrange n elements in increasing (or decreasing) order
– mergesort

• split elements into two groups of size n/2
• sort each half
• merge two halves

– quicksort
• pick pivot element
• split into smaller and larger groups (based on the pivot)
• sort each group

recursive
calls

recursive
calls

divide in half
sort each half

merge

divide into smaller than,
larger than groups based
on pivot element
sort each group

