

CPSC 225: Intermediate Programming • Spring 2025 81

Recursive Backtracking

• recursive backtracking
– generate the solution through a series of decisions
– enumerate all possible combinations of outcomes

• n queens
– place n queens on an nxn chess board so that no two queens

share a row, column, or diagonal
– as a series of decisions – where to put the queen in column i
– structure – for each possible row for column i, put a queen there

and ask a friend to place the rest of the queens

CPSC 225: Intermediate Programming • Spring 2025 82

Recursion vs Loops

Both recursion and loops involve repetition.

Why recursion?
• problem may be defined recursively (e.g. fibonacci)

– it is natural to reflect that definition in code
• it may be easier to come up with a recursive solution than

an iterative one (e.g. towers of hanoi)
– divide-and-conquer approach

• solves the explosion of fingers problem
– recursive backtracking approach

Note that recursion does not make it possible to solve any
new problems.

– (it is always possible to write a non-recursive solution, though it
may be much more complex)

CPSC 225: Intermediate Programming • Spring 2025 83

Recursion vs Loops

It is generally better to use loops unless recursion is called
for.

– function calls involve overhead
– loops can be less confusing to understand than recursion

Typically use loops when
– the task calls for repetition
– the recursive case only involves one recursive call and that call

is the last thing done (e.g. factorial) – tail recursion

Typically use recursion when
– the problem is defined recursively
– the recursive case involves multiple recursive calls (multiple

subproblems – explosion of fingers)
• though sometimes loops are preferable even in this case (e.g. fibonacci)

