Recursive Backtracking

recursive backtracking
generate the solution through a series of decisions
enumerate all possible combinations of outcomes

n queens

place n queens on an nxn chess board so that no two queens
share a row, column, or diagonal

as a series of decisions — where to put the queen in column j

structure — for each possible row for column J, put a queen there
and ask a friend to place the rest of the queens

CPSC 225: Intermediate Programming » Spring 2025 X X X X X X y 81

Recursion vs Loops

It is generally better to use loops unless recursion is called
for.

function calls involve overhead

loops can be less confusing to understand than recursion

Typically use loops when
the task calls for repetition

the recursive case only involves one recursive call and that call
is the last thing done (e.qg. factorial) — tail recursion

Typically use recursion when
the problem is defined recursively

the recursive case involves multiple recursive calls (multiple
subproblems — explosion of fingers)
though sometimes loops are preferable even in this case (e.g. fibonacci)

CPSC 225 Intermediate Programming + Spring 2025 83

Recursion vs Loops

Both recursion and loops involve repetition.

Why recursion?
problem may be defined recursively (e.g. fibonacci)
it is natural to reflect that definition in code
it may be easier to come up with a recursive solution than
an iterative one (e.g. towers of hanoi)
divide-and-conquer approach
solves the explosion of fingers problem
recursive backtracking approach

Note that recursion does not make it possible to solve any
new problems.

(it is always possible to write a non-recursive solution, though it
may be much more complex)

CPSC 225 Intermediate Programming « Spring 2025



