Functions

- a *functional relationship* between sets A and B associates exactly one element of B with each element of A
- also called a *mapping* from set A to set B
- a function expresses a functional relationship
 - written $f: A \rightarrow B$
 - f is a function from A to B
 - f maps A to B

CPSC 229: Foundations of Computation • Spring 2024

CPSC 229: Foundations of Computation • Spring 2024

- for $a \in A$, $f(a) \in B$ is the element of *B* that *f* associates with *a* • f(a) is the value of *f* at *a*
- note that while there is exactly one element of *B* associated with a given *a*, it is not required that it be unique i.e. it is not required that $f(a_1) \neq f(a_2)$ for $a_1 \neq a_2$
- $g \circ f$ is the composition of g and f: $(g \circ f)(a) = g(f(a))$
 - to be valid, requires that $f: A \rightarrow B$ and $g: B \rightarrow C$

Let A = {1,2,3,4} and let B = {a,b,c}. Find the sets A × B and B × A.
 Let A be the set {a,b,c,d}. Let f be the function from A to A given by the set of ordered pairs {(a,b), (b, b), (c, a), (d, c)}, and let g be the function given by the set of ordered pairs {(a, b), (b, c), (c, d), (d, d)}. Find the set of ordered pairs for the composition g ∘ f.
 Let A = {a,b,c} and let B = {0,1}. Find all possible functions from A to B. Give each function as a set of ordered pairs. (Hint: Every such function corresponds to one of the subsets of A.)

Ordered *n*-tuples

CPSC 229: Foundations of Computation • Spring 2024

- (a,b) is the ordered pair containing entities a and b – if $a \neq b$, (a,b) and (b,a) are different
 - (a,b) and (c,d) are equal iff a = c and b = d
- for sets A and B, A×B is the cross product (or Cartesian product)

 $A \times B = \{(a,b) | a \in A \land b \in B\}$

- contains every ordered pair containing an element of ${\it A}$ and an element of ${\it B}$
- extends to ordered triples $A \times B \times C$ and other ordered n-tuples
- the set { (a,b) ∈ A×B | a ∈ A and b = f(a) } is the graph of f
 a function can be specified by giving a set of ordered pairs
- f((a,b)) is more commonly written f(a,b)

More Terminology	
for a function f: $A \rightarrow B$	
- A is the domain of f - B is the range of f - the image of f is $\{ f(a) \mid a \in A \}$ • in some contexts, this is known as the range values of f	
- function <i>f</i> is <i>onto</i> (or <i>surjective</i>) if the image is equal to the range - function <i>f</i> is <i>one-to-one</i> (or <i>injective</i>) if each element of the range is associated with at most one element of the domain $\forall x \in A \forall y \in A(x \neq y \rightarrow f(x) \neq f(y)) \\ \forall x \in A \forall y \in A(f(x) = f(y) \rightarrow x = y)$)
- function <i>f</i> is <i>bijective</i> if it is both one-to-one and onto CPSC 229: Foundations of Computation • Spring 2024	37

4. Consider las. Decid	the functions fr le whether each	$\operatorname{com} \mathbb{Z}$ to \mathbb{Z} which are function is onto and	defined by the following formu- whether it is one-to-one; prove
your answ a) $f(n$	vers.) = 2n	b) $g(n) = n + 1$	c) $h(n) = n^2 + n + 1$
d) s(n	$) = \begin{cases} n/2, \\ (n+1)/2 \end{cases}$	if n is even , if n is odd	
		•	