Functions

- a functional relationship between sets A and B associates exactly one element of B with each element of A
- also called a mapping from set A to set B
- a function expresses a functional relationship
written $f: A \rightarrow B$
- f is a function from A to B
- f maps A to B
for $a \in A, f(a) \in B$ is the element of B that f associates with a - $f(a)$ is the value of f at a
- note that while there is exactly one element of B associated with a given a, it is not required that it be unique i.e. it is not required that $f\left(a_{1}\right) \neq f\left(a_{2}\right)$ for $a_{1} \neq a_{2}$
- $g \circ f$ is the composition of g and $f:(g \circ f)(a)=g(f(a))$
to be valid, requires that $f: A \rightarrow B$ and $g: B \rightarrow C$
CPSC 229: Foundations ot Computation • Spring 2024

1. Let $A=\{1,2,3,4\}$ and let $B=\{a, b, c\}$. Find the sets $A \times B$ and $B \times A$.

2. Let A be the set $\{a, b, c, d\}$. Let f be the function from A to A given by the set of ordered pairs $\{(a, b),(b, b),(c, a),(d, c)\}$, and let g be the function given by the set of ordered pairs $\{(a, b),(b, c),(c, d),(d, d)\}$. Find the set of ordered pairs for the composition $g \circ f$
3. Let $A=\{a, b, c\}$ and let $B=\{0,1\}$. Find all possible functions from A to B. Give each function as a set of ordered pairs. (Hint: Every such function corresponds to one of the subsets of A.)

Ordered n-tuples

- (a, b) is the ordered pair containing entities a and b if $a \neq b,(a, b)$ and (b, a) are different
(a, b) and (c, d) are equal iff $a=c$ and $b=d$
- for sets A and $B, A \times B$ is the cross product (or Cartesian product)

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

contains every ordered pair containing an element of A and an element of B
extends to ordered triples $A \times B \times C$ and other ordered n-tuples

- the set $\{(a, b) \in A \times B \mid a \in A$ and $b=f(a)\}$ is the graph of f a function can be specified by giving a set of ordered pairs
- $f((a, b))$ is more commonly written $f(a, b)$

CPSC 229: Foundations ot Computation - Spring 2024

More Terminology

for a function $f: A \rightarrow B$
$-A$ is the domain of f
B is the range of f

- the image of f is $\{f(a) \mid a \in A\}$
- in some contexts, this is known as the range the range containing the
function f is onto (or surjective) if the
image is equal to the range
function f is one-to-one (or
injective) if each element o
he range is associated with
at most one element of the
domain
function f is bijective if it is both one-to-one and onto

