Finite-State Automata and Regular Languages

Theorem 3.5. The intersection of two regular languages is a regular language.

The union of two regular languages is a regular language.
The concatenation of two regular languages is a regular language.
The complement of a regular language is a regular language.
The Kleene closure of a regular language is a regular language

- sketch of proof
build DFAs or NFAs accepting the languages using Theorem 3.3 build a DFA or NFA using those DFAs/NFAs which accepts the union/concatenation/complement/Kleene closure
- for two DFAs M_{1}, M_{2}, M accepting $M_{1} \cap M_{2}$ contains pairs of states from M_{1} and M_{2} - the idea is to move through M_{1}, M_{2} simultaneously and only accept strings which end in final states in both ${ }^{1}$ machines
for a DFA M, M ' accepting the complement of M 's language is M with the
final and non-final states switched
use Theorem 3.4 to conclude that there is a regular expression corresponding to that DFA/NFA

Finite-State Automata and Regular Languages

- for two DFAs M_{1}, M_{2}, M accepting $M_{1} \cap M_{2}$ contains pairs of states from M_{1} and M_{2}
the idea is to move through $\mathrm{M}_{1}, \mathrm{M}_{2}$ simultaneously and only accept strings which end in final states in both machines

b)

CPSC 229: Foundaions ot Computaion. \cdot Soing 2024

Finite-State Automata and Regular Languages

- for a DFA M, M' accepting the complement of M's language is M with the final and non-final states switched must have all transitions specified, no omit-trap-state shortcuts!

CPSC 299: Foundatanns of Compuation • Spering 2024

