4. For each of the following languages fin- the language:	d a context-free grammar that generates	
a) $\{a^n b^m n \ge m > 0\}$	b) $\{a^n b^m \mid n, m \in \mathbb{N}\}$	
c) $\{a^{n}b^{m} n \ge 0 \land m = n + 1\}$ e) $\{a^{n}b^{m}c^{k} n = m + k\}$ g) $\{a^{n}b^{m}c^{r}d^{t} n + m = r + t\}$	d) $\{a^{n}b^{m}c^{n} \mid n, m \in \mathbb{N}\}$ f) $\{a^{n}b^{m} \mid n \neq m\}$ b) $\{a^{n}b^{m}c^{k} \mid n \neq m + k\}$	
g) $\{u \ v \ c \ u \ \ n+m-l+l\}$	ii) $\{u \ v \ c \ \ n \neq m + \kappa\}$	
CPSC 229: Foundations of Computation • Spring 2024		11

Context-Free vs Regular

every regular language is context-free

Definition 4.3. A *right-regular grammar* is a context-free grammar in which the right-hand side of every production rule has one of the following forms: the empty string; a string consisting of a single non-terminal symbol; or a string consisting of a single terminal symbol followed by a single non-terminal symbol.

Theorem 4.4. A language L is regular if and only if there is a right-regular grammar G such that L = L(G). In particular, every regular language is context-free.

idea of proof

- build an NFA with states corresponding to the non-terminal symbols of the grammar
- production $A \rightarrow bC$ corresponds to a transition from state A to state C while reading symbol b
- production $A \rightarrow B$ corresponds to an ϵ -transition from state A to state B
- production $A \rightarrow \epsilon$ corresponds to A being a final state

CPSC 229: Foundations of Computation • Spring 2024

Context-Free Languages

Theorem 4.3. Suppose that L and M are context-free languages. Then the languages $L \cup M$, LM, and L^* are also context-free.

9. Suppose that G and H are context-free grammars. Let L = L(G) and let M = L(H). Explain how to construct a context-free grammar for the language LM. You do not need to give a formal proof that your grammar is correct.

- 10. Suppose that G is a context-free grammar. Let L = L(G). Explain how to construct a context-free grammar for the language L*. You do not need to give a formal proof that your grammar is correct.
- 11. Suppose that L is a context-free language. Prove that L^R is a context-free language. (Hint: Given a context-free grammar G for L, make a new grammar, G^R, by reversing the right-hand side of each of the production rules in G. That is, A → w is a production rule in G if and only if A → w^R is a production rule in G^R.)

CPSC 229: Foundations of Computation • Spring 2024