General Grammars

CPSC 229: Foundations of Computation • Spring 2024

- **Definition 4.6.** A grammar is a 4-tuple (V, Σ, P, S) , where:
- 1. V is a finite set of symbols. The elements of V are the non-terminal symbols of the grammar.
- 2. Σ is a finite set of symbols such that $V \cap \Sigma = \emptyset$. The elements of Σ are the terminal symbols of the grammar.
- 3. *P* is a set of production rules. Each rule is of the form $u \longrightarrow x$ where u and x are strings in $(V \cup \Sigma)^*$ and u contains at least one symbol from *V*.
- 4. $S \in V$. S is the start symbol of the grammar.
- a context-free grammar is a grammar where the rules are limited to the form $A \rightarrow x$ (a single non-terminal on the left)

General Grammars

- (general) grammars are more powerful than context-free grammars
 - we've seen several examples
- are there languages that can't be produced by grammars?
 - yes for an alphabet $\Sigma,$ there uncountably many languages but only countably many that can be generated by grammars

CPSC 229: Foundations of Computation • Spring 2024

1. Find a derivation for the string *caabcb*, according to the first example grammar in this section. Find a derivation for the string *aabbcc*, according to the second example grammar in this section. Find a derivation for the string *aaaa*, according to the third example grammar in this section.

$S \longrightarrow SABC$ $S \longrightarrow \varepsilon$ $AB \longrightarrow BA$ $BA \longrightarrow AB$ $AC \longrightarrow CA$ $CA \longrightarrow AC$ $BC \longrightarrow CB$ $CB \longrightarrow BC$	$S \longrightarrow SABC$ $S \longrightarrow X$ $BA \longrightarrow AB$ $CA \longrightarrow AC$ $CB \longrightarrow BC$ $XA \longrightarrow aX$ $X \longrightarrow Y$ $YB \longrightarrow bY$	$S \longrightarrow DTE$ $T \longrightarrow BTA$ $T \longrightarrow \varepsilon$ $BA \longrightarrow AaB$ $Ba \longrightarrow aB$ $BE \longrightarrow E$ $DA \longrightarrow D$ $Da \longrightarrow aD$
$A \longrightarrow a$ $B \longrightarrow b$ $C \longrightarrow c$ $n_{a}(w) = n_{b}(w) = n_{c}(w)$	$\begin{array}{c} Y \longrightarrow Z \\ ZC \longrightarrow cZ \\ Z \longrightarrow \varepsilon \end{array}$	$DE \longrightarrow \varepsilon$