## **Computing Functions**

**Definition 5.2.** Suppose that  $\Sigma$  and  $\Gamma$  are alphabets that do not contain # and that f is a function from  $\Sigma^*$  to  $\Gamma^*$ . We say that f is **Turingcomputable** if there is a Turing machine  $M = (Q, \Lambda, q_0, \delta)$  such that  $\Sigma \subseteq \Lambda$  and  $\Gamma \subseteq \Lambda$  and for each string  $w \in \Sigma^*$ , when M is run with input w, it halts with output f(w). In this case, we say that M computes the function f.



 $\Sigma = \{a\}$ computes  $f(a^n) = a^{2n}$ 

CPSC 229: Foundations of Computation • Spring 2024

- 1. Let  $\Sigma = \{a\}$ . Draw a transition diagram for a Turing machine that computes the function  $f: \Sigma^* \to \Sigma^*$  where  $f(a^n) = a^{3n}$ , for  $n \in \mathbb{N}$ . Draw a transition diagram for a Turing machine that computes the function  $f: \Sigma^* \to \Sigma^*$  where  $f(a^n) = a^{3n+1}$ , for  $n \in \mathbb{N}$ .
- **2.** Let  $\Sigma = \{a, b\}$ . Draw a transition diagram for a Turing machine that computes the function  $f: \Sigma^* \to \Sigma^*$  where  $f(w) = w^R$ .
- 6. Draw a transition diagram for a Turing machine which decides the language  $\{a^nb^n \mid n \in \mathbb{N}\}$ . (Hint: Change the a's and b's to \$'s in pairs.) Explain in general terms how to make a Turing machine that decides the language  $\{a^n b^n c^n \mid n \in \mathbb{N}\}.$
- 7. Draw a transition diagram for a Turing machine which decides the language  $\{a^nb^m \mid n>0 \text{ and } m \text{ is a multiple of } n\}$ . (Hint: Erase n b's at a time.)

CPSC 229: Foundations of Computation • Spring 2024

Computable Languages

**Definition 5.3.** Let  $\Sigma$  be an alphabet that does not contain # and let Lbe a language over  $\Sigma$ . We say that L is **Turing-decidable** if there is a Turing machine  $M = (Q, \Lambda, q_0, \delta)$  such that  $\Sigma \subset \Lambda$ ,  $\{0, 1\} \subset \Lambda$ , and for each  $w \in \Sigma^*$ , when M is run with input w, it halts with output  $\chi_L(w)$ . (That is, it halts with output 0 or 1, and the output is 0 if  $w \notin L$  and is 1 if  $w \in L$ .) In this case, we say that M decides the language L.

**Definition 5.4.** Let  $\Sigma$  be an alphabet that does not contain #, and let Lbe a language over  $\Sigma$ . We say that L is **Turing-acceptable** if there is a Turing machine  $M = (Q, \Lambda, q_0, \delta)$  such that  $\Sigma \subseteq \Lambda$ , and for each  $w \in \Sigma^*$ , M halts on input w if and only if  $w \in L$ . In this case, we say that M **accepts** the language L.

CPSC 229: Foundations of Computation • Spring 2024