Computability - Key Points

- Church-Turing thesis and its importance
- definitions of recursively enumerable and recursive with respect to languages
- intuition for the equivalence of Turing machines to other models of computation, including real computers

CPSC 229: Fundations of Computaion \cdot Sping 2024

- known for
- major contributes to mathematical logic
- foundational contributions to theoretical computer science
- λ calculus
- underlies functional programming languages such as Scheme as well as Java lambda expressions
Church's theorem
- proved the unsolvability of the Entscheidungsproblem (decision problem) by showing that there is no computable function which decides if two given λ-calculus expressions are equivalent
Church-Turing thesis

Church-Turing Thesis

- an effective method is one which
- can be expressed by a finite number of instructions, each involving a finite number of symbols
always terminates in a finite number of steps, and always produces a correct answer
- can, at least in principle, be carried out by a human with only pencil and paper
requires no ingenuity, only rote following of the instructions
- the Church-Turing thesis states that
a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine

Two (Multi)-Tape Turing Machines

- two (or more) tapes, each with separate read/write heads
- idea
let M be a two-tape Turing machine and K be a one-tape Turing machine
introduce two new symbols (e.g. @, \$) to mark the position of the read/write heads and separate tape 1's contents from tape 2
- K's tape will contain the contents of M's tape 1 followed by the contents of M 's tape 2, with @ inserted to the left of the head position on each tape and $\$$ at the beginning, end, and between the two tapes
- e.g. if M 's tapes contain $a \underline{b} b \# \# c c a$ and $01 \# 111 \# 001$, respectively, with the heads on the underlined symbols, then K 's tape will contain \$a@bb\#cca\$01\#111\#00@1\$
to simulate M's operation, K scans tape to find symbols to the right of the @ symbols, then updates its state and the tape content accordingly

Recursively Enumerable

- a recursively enumerable language is one for which there is a program whose output is exactly the strings in the language
- a recursively enumerable language is one whose strings can be output on the second tape of a two-tape Turing machine
- no requirement as to order, and repeats are allowed

CPSC 229: Foundations ol Compuataion - Spining 2024

Theorem 5.1. Let Σ be an alphabet and let L be a language over Σ. Then the following are equivalent.

1. There is a Turing machine that accepts L
2. There is a two-tape Turing machine that runs forever, making a list of strings on its second tape, such that a string w is in the list if and only if $w \in L$.
3. There is a Turing-computable function $f:\{a\}^{*} \rightarrow \Sigma^{*}$ such that L is the range of the function f.

- idea of proof
property $2 \rightarrow$ property 1
- let L be a language that satisfies property 2
- let T be a two-tape Turing machine that lists the elements of L
- construct M which, given an input w, simulates the computation of T - when T produces a string in the list, M compares the string to w and halts if they are the same
- if $w \in L, T$ will eventually produce it and M will halt $\rightarrow M$ accepts L

Theorem 5.1. Let Σ be an alphabet and let L be a language over Σ. Then the following are equivalent.

1. There is a Turing machine that accepts L.
2. There is a two-tape Turing machine that runs forever, making a list of strings on its second tape, such that a string w is in the list if and only if $w \in L$.
3. There is a Turing-computable function $f:\{a\}^{*} \rightarrow \Sigma^{*}$ such that L is the range of the function f.

- idea of proof
property $3 \rightarrow$ property 2
- let L be a language that satisfies property 3
- construct a two-tape Turing machine that, for each $n \geq 0$, uses tape 1 to
generate a^{n} and compute $f\left(a^{n}\right)$, then copies $f\left(a^{n}\right)$ to tape 2
- property $2 \rightarrow$ property 3
- let M be a machine that lists L
- define g to be the function where $g\left(a^{n}\right)$ is the $(n+1)^{\text {th }}$ item in the list produced by M
g is Turing-computable because $g\left(a^{n}\right)$ can be produced by running M until the $(n+1)^{n}$ item is produced, then halting with that item as the output

CPSC 229 Foundations ot Computaion . Spine 202

Theorem 5.1. Let Σ be an alphabet and let L be a language over Σ. Then the following are equivalent:

1. There is a Turing machine that accepts L.
2. There is a two-tape Turing machine that runs forever, making a list of strings on its second tape, such that a string w is in the list if and only if $w \in L$.
3. There is a Turing-computable function $f:\{a\}^{*} \rightarrow \Sigma^{*}$ such that L is the range of the function f.

- idea of proof
property $1 \rightarrow$ property 2
- let L be Turing-acceptable and M be a machine that accepts L
cannot build a two-tape machine T by generating each of the elements of Σ
in turn, checking to see if M accepts each because M only halts if $w \in L$
- T must instead simulate M on all of the elements of L at once - it repeatedly generates the next element in Σ^{*} and then advances M one step on all of the current elements, writing the corresponding input to tape 2 whenever a computation halts
- T eventually goes through all elements of Σ^{*}, and simulation of M will eventually end for all $w \in L$, so T will eventually produce all $w \in L$

Theorem 5.2. A language L is Turing acceptable (equivalently, recursively enumerable) if and only if there is a general grammar that generates L.

- idea of proof
grammar \rightarrow Turing acceptable
- M generates every string derivable from the start symbol S -
start with $w \$ S$ on the tape
repeatedly
for string on the tape and each production $x \rightarrow y$, if x occurs in the string, append $\$$ to the end of the tape and copy the string, replacing x
compare the new string to w, halting if they match
- if $w \in L$, eventually M will produce it and halt

CPSC 229: Foundations of Conmerto - Serer2en

