Computability – Key Points

- Church-Turing thesis and its importance
- definitions of recursively enumerable and recursive with respect to languages
- intuition for the equivalence of Turing machines to other models of computation, including real computers

Alonzo Church

CPSC 229: Foundations of Computation . Spring 2024

- American mathematician, 1903-1995
- known for
 - major contributes to mathematical logic
 - foundational contributions to theoretical computer science
 - λ calculus
 - underlies functional programming languages such as Scheme as well as Java lambda expressions
 - Church's theorem
 - proved the unsolvability of the Entscheidungsproblem (decision problem) by showing that there is no computable function which decides if two given λ -calculus expressions are equivalent
 - Church-Turing thesis

CPSC 229: Foundations of Computation • Spring 2024

Church-Turing Thesis

- an effective method is one which
 - can be expressed by a finite number of instructions, each involving a finite number of symbols
 - always terminates in a finite number of steps, and always produces a correct answer
 - can, at least in principle, be carried out by a human with only pencil and paper
 - requires no ingenuity, only rote following of the instructions
- the Church-Turing thesis states that
 - a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine

CPSC 229: Foundations of Computation • Spring 2024

Two (Multi)-Tape Turing Machines

- two (or more) tapes, each with separate read/write heads
- idea
 - let M be a two-tape Turing machine and K be a one-tape Turing machine

- introduce two new symbols (e.g. @, \$) to mark the position of the read/write heads and separate tape 1's contents from tape 2
- K's tape will contain the contents of M's tape 1 followed by the contents of M's tape 2, with @ inserted to the left of the head position on each tape and \$ at the beginning, end, and between the two tapes
 - e.g. if M's tapes contain abb##cca and 01#111#001, respectively, with the heads on the underlined symbols, then K's tape will contain \$a@bb##cca\$01#111#00@1\$
- to simulate *M*'s operation, *K* scans tape to find symbols to the right of the @ symbols, then updates its state and the tape content accordingly

https://en.wikipedia.org/wiki/Alonzo_Church

Recursively Enumerable

- a recursively enumerable language is one for which there is a program whose output is exactly the strings in the language
- a recursively enumerable language is one whose strings can be output on the second tape of a two-tape Turing machine
 - no requirement as to order, and repeats are allowed

Theorem 5.1. Let Σ be an alphabet and let L be a language over Σ . Then the following are equivalent:

- 1. There is a Turing machine that accepts L.
- 2. There is a two-tape Turing machine that runs forever, making a list of strings on its second tape, such that a string w is in the list if and only if $w \in L$.
- 3. There is a Turing-computable function $f: \{a\}^* \to \Sigma^*$ such that L is the range of the function f.

idea of proof

CPSC 229: Foundations of Computation . Spring 2024

CPSC 229: Foundations of Computation • Spring 2024

- property $2 \rightarrow$ property 1

- let *L* be a language that satisfies property 2
- let *T* be a two-tape Turing machine that lists the elements of *L*
- construct M which, given an input w, simulates the computation of T when T produces a string in the list, M compares the string to w and halts if they are the same
- if $w \in L$, T will eventually produce it and M will halt $\rightarrow M$ accepts L

Theorem 5.1. Let Σ be an alphabet and let L be a language over Σ . Then the following are equivalent:

- 1. There is a Turing machine that accepts L.
- There is a two-tape Turing machine that runs forever, making a list of strings on its second tape, such that a string w is in the list if and only if w ∈ L.
- 3. There is a Turing-computable function $f: \{a\}^* \to \Sigma^*$ such that L is the range of the function f.
- idea of proof
 - property 3 \rightarrow property 2
 - let L be a language that satisfies property 3
 - construct a two-tape Turing machine that, for each $n \ge 0$, uses tape 1 to generate a^n and compute $f(a^n)$, then copies $f(a^n)$ to tape 2
 - property 2 \rightarrow property 3
 - let M be a machine that lists L
 - define g to be the function where g(aⁿ) is the (n+1)th item in the list produced by M
 - *g* is Turing-computable because $g(a^n)$ can be produced by running *M* until the $(n+1)^{th}$ item is produced, then halting with that item as the output

CPSC 229: Foundations of Computation • Spring 2024

Theorem 5.1. Let Σ be an alphabet and let L be a language over Σ . Then the following are equivalent:

- 1. There is a Turing machine that accepts L.
- 2. There is a two-tape Turing machine that runs forever, making a list of strings on its second tape, such that a string w is in the list if and only if $w \in L$.
- 3. There is a Turing-computable function $f: \{a\}^* \to \Sigma^*$ such that L is the range of the function f.
- idea of proof
 - property $1 \rightarrow$ property 2
 - let *L* be Turing-acceptable and *M* be a machine that accepts *L*
 - cannot build a two-tape machine *T* by generating each of the elements of Σ^* in turn, checking to see if *M* accepts each because *M* only halts if $w \in L$
 - T must instead simulate M on all of the elements of L at once it repeatedly generates the next element in Σ and then advances M one step on all of the current elements, writing the corresponding input to tape 2 whenever a computation halts
 - *T* eventually goes through all elements of Σ^* , and simulation of *M* will eventually end for all $w \in L$, so *T* will eventually produce all $w \in L$

CPSC 229: Foundations of Computation • Spring 2024

- grammar \rightarrow Turing acceptable
- M generates every string derivable from the start symbol S
 - start with w\$S on the tape
 - repeatedly
 - > for each string on the tape and each production $x \rightarrow y$, if x occurs in the string, append \$ to the end of the tape and copy the string, replacing x with y

19

- » compare the new string to *w*, halting if they match
- if $w \in L$, eventually M will produce it and halt

CPSC 229: Foundations of Computation • Spring 2024