Show the following logical equivalences by finding a chain of equivalences from the left side to the right. State which definition or law of logic justifies each equivalent in the chain.

(a)
$$p \wedge (q \wedge p) \equiv p \wedge q$$

(b)
$$(\neg p) \rightarrow q \equiv p \lor q$$

(c)
$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

Answer:

(a)
$$p \wedge (q \wedge p) \equiv p \wedge (p \wedge q)$$
 Commutative Law $\equiv (p \wedge p) \wedge q$ Associative Law $\equiv p \wedge q$ Idempotent Law

(b)
$$(\neg p) \rightarrow q \equiv \neg(\neg p) \lor q$$
 definition of \rightarrow $\equiv p \lor q$ Double Negation Law

(c)
$$(p \to r) \land (q \to r)$$
 \equiv $(\neg p \lor r) \land (q \to r)$ definition of \to \equiv $(\neg p \lor r) \land (\neg q \lor r)$ definition of \to \equiv $(r \lor \neg p) \land (\neg q \lor r)$ Commutative Law \equiv $(r \lor \neg p) \land (r \lor \neg q)$ Commutative Law \equiv $r \lor (\neg p \land \neg q)$ Distributive Law \equiv $r \lor \neg (p \lor q)$ DeMorgan's Law \equiv $\neg (p \lor q) \lor r$ Commutative Law \equiv $(p \lor q) \to r$ definition of \to