CPSC 229, Spring 2024 Homework #10 Comments

There is a notation for derivations; you can see an example in the hwl0 examples
posted on the schedule page.

The structure of a parse tree reflects the rules in the grammar. Each symbol on the
right side of a rule has its own branch. See the hw10 examples posted on the schedule

page.

For #1, the symbols in the grammar include A, V, —, (, and) — these are not part
of the production rule syntax and should be treated the same as p, ¢, and the other
letters.

You don’t always have to push or pop something in a pushdown automaton. A tran-
sition o, €/€ is valid.

For both reading (determining the language accepted by) and writing (creating) push-
down automata, keep in mind the two elements and the role each plays:

e The state transitions consume the input string, and states are used for tracking
specific numbers and sequences of symbols.

e The stack is used for matching — one symbol with another, or a count of symbols
with another count.

For #4, start with the states. In (c), the string must start with 0 or more occurrences
of ab — the a gets to state ¢; and the b is needed to get back to state qg, because that’s
the only way to get to the final state go. After the initial abs, there can be 0 or more
occurrences of ba — the b gets to state g3 and it must be followed by an a to get back
to the final state. So our starting point is (ab)*(ba)*. Now what about the stack? For
the initial abs, one b is pushed for each ab. Then, for the ending bas, one b is popped
for each ba — thus there must be the same number of bas as abs in order to end in ¢,
with an empty string and an empty stack. Thus the language is (ab)™(ba)" for n > 0
or, in English, zero or more abs followed by the same number of bas.

Use a similar tactic for #4d. Looking at just the states means that there must be 0 or
more aas followed by a b and then 0 or more bbs — (aa)*b(bb)*. Looking at the stack
shows that an a is pushed and then popped for each aa, and a b is pushed and then
popped for each bb — so actually the stack isn’t really contributing anything here. The
resulting language is (aa)*b(bb)* or, in English, an even number of as followed by an
odd number of bs.

For constructing pushdown automata in #5, keep the same two elements in mind.
Start with the states — “multiple of 3” is a specific number and so needs to be handled
through states. Start with an NFA that accepts a0 where n and m are a multiple
of 3. Then address the “same number of as and bs” part — that’s a matching thing.
How do you use the stack to match as with bs?

A third principle for constructing pushdown automata is keep it simple. For (b), the
only elements of the language are matching —) with (and | with [— and consuming

CPSC 229, Spring 2024 Homework #10 Comments

as and bs. (There’s no counting needed.) Is matching a stack thing or a state thing?
If it’s not a state thing, there’s no need for more states! This pushdown automata can
have just a single state.

For #6, remember the definition of deterministic context free — a language is deter-
ministic context free if there is a deterministic pushdown automaton accepting L$.
Start with just constructing a pushdown automaton for L$ (don’t worry about the
deterministic part yet). Is n,(w) > ny(w) a state thing or a stack thing? If it is a stack
thing, don’t add more states unless there’s a sequence-of-symbols something going on
— a common mistake was to accept the language a"b™ where n > m rather than L,
which allows the as and bs to be in any order. (There is eventually some kind of se-
quencing going on with n,(w) > n,(w) because the stack has to be empty in order to
accept — once $ has been consumed, the task switches to emptying the stack rather
than matching as and bs, which means a new state.)

