
CPSC 229, Spring 2024 Homework #9 Comments

The algorithm discussed in class for constructing a machine M to accept L1∩L2 given
machines M1 and M2 for L1 and L2 respectively is for DFAs. The two NFAs given in
#1 must first be converted to DFAs. (It is also possible to do the conversion at the
same time as constructing M , or to adapt the intersection construction to work with
NFAs instead of DFAs. Both of these were also accepted.) Also, remember that when
there isn’t a transition shown, it means that it is a transition to a trap state and that
string won’t be accepted — either add a trap state and the requisite transitions to each
DFA before doing the intersection or only include transitions in M for which there are
transitions in both M1 and M2. Do not treat a missing transition as if it is a transition
that loops back to the same state.

anbm means n as followed by m bs. n as and m bs in any order would be
{ w ∈ {a, b}∗ | na(w) = n ∧ nb(w) = m }.

When constructing a grammar for a language, remember that the grammar needs to
generate all of the strings in the language, not just some of them. For example, #4a
asks for a grammar to generate strings of the form anbm where n 6= m. It isn’t sufficient
to create a grammar than can generate strings with one more a (or b) — those strings
are part of the language, but so are many other things. The grammar needs to be able
to generate every string of the required language.

When counts are related to each other, symbols need to be generated in pairs. The
following does not work for #4b:

S −→ ABC

A −→ aA

A −→ ε

B −→ bB

B −→ ε

C −→ cC

C −→ ε

Any number of as, bs, and cs can be generated, with the as followed by bs and the bs
followed by cs, but there’s nothing to enforce that the number of bs is greater than
the combined number of as and cs. To ensure more bs, first ensure the same number
of bs — every a or c produced must also result in a b — and then allow one or more
additional bs.


