

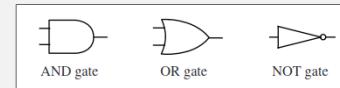
Key Points

- terminology – logic gates, logic circuits, combinatorial logic circuit, feedback loop, disjunctive normal form
- processes / algorithms
 - building a logic circuit from a proposition
 - constructing a proposition from a logic circuit
 - using boolean algebra to simplify circuits
- theorems
 - every compound proposition is computed by a logic circuit with one output wire
 - every combinatorial logic circuit with one output computes the value of some compound proposition
 - it is possible to build a proposition with only \wedge , \vee , \neg and in disjunctive normal form for any truth table where at least one of the output values is true
- applications to computers

7

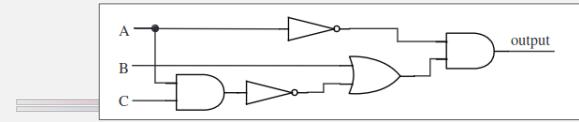
Logic Circuits

- logic gates are electronic components that compute values of simple propositions



– input and output wires can be in one of two states (on, off), which corresponds to the boolean values \top , \perp

- logic circuits are built from connecting inputs and outputs of logic gates to each other



CPSC 229: Foundations of Computation • Spring 2026

28

Constructing Circuits From Propositions

- algorithm
 - if the proposition contains operators other than \wedge , \vee , \neg , convert the proposition to a logically equivalent one using only \wedge , \vee , \neg
 - determine the *main operator* – the one that is applied last
 - add the corresponding logic gate to the circuit
 - repeat the last two steps for each of the compound propositions joined by this main operator, connecting their outputs to the inputs of this main operator
 - create one input for each propositional variable and connect them to the appropriate inputs

a) $A \wedge (B \vee \neg C)$
c) $(p \vee q \vee r) \wedge (\neg p \vee \neg q \vee \neg r)$

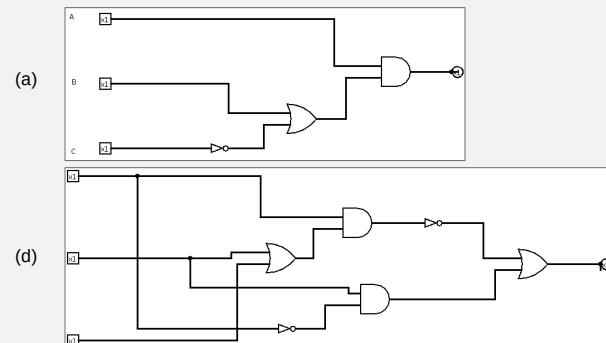
b) $(p \wedge q) \wedge \neg(p \wedge \neg q)$
d) $\neg(A \wedge (B \vee C)) \vee (B \wedge \neg A)$

CPSC 229: Foundations of Computation • Spring 2026

29

Constructing Circuits From Propositions

a) $A \wedge (B \vee \neg C)$
b) $(p \wedge q) \wedge \neg(p \wedge \neg q)$
c) $(p \vee q \vee r) \wedge (\neg p \vee \neg q \vee \neg r)$
d) $\neg(A \wedge (B \vee C)) \vee (B \wedge \neg A)$

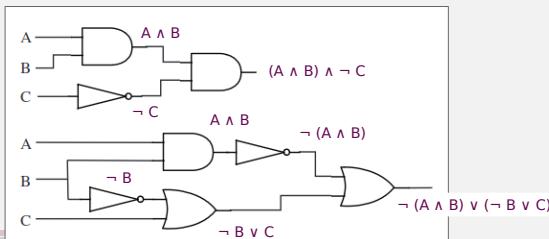


CPSC 229: Foundations of Computation • Spring 2026

30

Constructing Propositions From Circuits

- algorithm
 - label the circuit's inputs with the name of a propositional variable
 - label each gate's output with the proposition consisting of the propositions represented by the gate's inputs combined with operator represented by the gate
 - the output from the final logic gate is the proposition

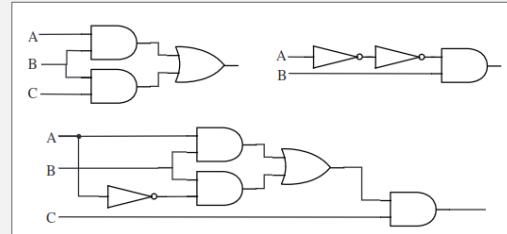


CPSC 229: Foundations of Computation • Spring 2026

31

Simplifying Circuits

- algorithm
 - convert the circuit to propositional logic
 - use boolean algebra to simplify the proposition
 - construct the circuit corresponding to the simplified proposition

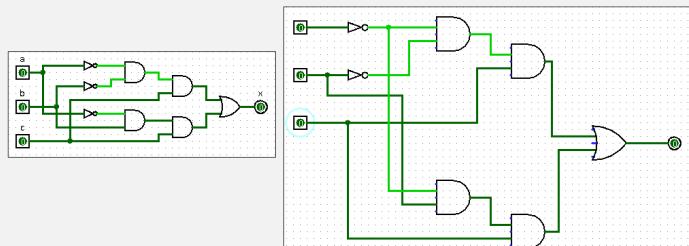


CPSC 229: Foundations of Computation • Spring 2026

32

Simplifying Circuits

- also be alert to the possibility of reusing outputs from gates



CPSC 229: Foundations of Computation • Spring 2026

33

Theorems

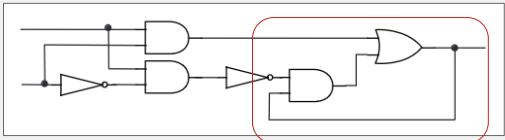
- every compound proposition is computed by a logic circuit with one output wire
- justification
 - apply the algorithm for converting propositions into circuits

CPSC 229: Foundations of Computation • Spring 2026

34

Combinatorial Logic Circuits

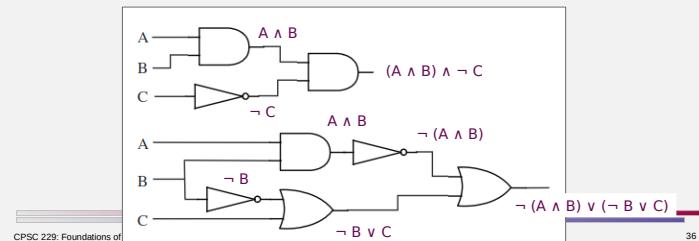
- a *combinatorial logic circuit* has no feedback loops
- a *feedback loop* occurs when an output of a gate is connected back to an input of the same gate



— circuits with feedback loops do not compute compound propositions, but they are important for computer memories

Theorems

- every combinatorial logic circuit with one output computes the value of some compound proposition
- justification
 - each wire represents the value of some proposition
 - the proposition represented by an output wire consists of the propositions represented by the input wires, joined by the logical operation corresponding to the gate



Disjunctive Normal Form

- a compound proposition is in *disjunctive normal form* if
 - it is a disjunction of conjunctions of simple terms, and
 - disjunction = \vee , conjunction = \wedge , simple term = p or $\neg p$
 - each propositional variable occurs at most once in each conjunction, and
 - occurs as either p or $\neg p$, but not both
 - each conjunction occurs at most once in the disjunction
 - no repeats

$$\begin{aligned}
 & (p \wedge q \wedge r) \vee (p \wedge \neg q \wedge r \wedge s) \vee (\neg p \wedge \neg q) \\
 & \quad (p \wedge \neg q) \\
 & \quad (A \wedge \neg B) \vee (\neg A \wedge B) \\
 & p \vee (\neg p \wedge q) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge \neg q \wedge \neg r \wedge w)
 \end{aligned}$$

Theorems

- [theorem 1.3] it is possible to build a proposition with only \wedge , \vee , \neg and in disjunctive normal form for any truth table where at least one of the output values is \top
- justification (algorithm)
 - for each row of the table where the output value is \top , build a conjunction of simple terms —
 - for each variable p whose value is true in that row, include p in the conjunction
 - for each variable q whose value is false in that row, include $\neg q$ in the conjunction
 - take the disjunction of all such conjunctions

p	q	r	output
F	F	F	F
F	F	T	T
F	T	F	F
F	T	T	T
T	F	F	F
T	F	T	F
T	T	F	F
T	T	T	T

$(\neg p \wedge \neg q \wedge r)$
 $(\neg p \wedge q \wedge r)$
 $p \wedge q \wedge r$

the conjunction is \top only for the specific combination of values in that row
 the disjunction is true only if at least one of the disjunctions is \top

Theorems

- [theorem 1.3] it is possible to build a proposition with only \wedge , \vee , \neg and in disjunctive normal form for any truth table where at least one of the output values is true
 - what if all of the output values are false?

p	q	r	output
F	F	F	F
F	F	T	F
F	T	F	F
F	T	T	F
T	F	F	F
T	F	T	F
T	T	F	F
T	T	T	F

this is a contradiction – not really useful to express

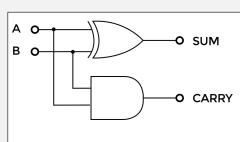
workaround: accept F as a proposition in disjunctive normal form

Half Adder

- for adding two 1-bit numbers

1)	2)	3)
0	+ 0	0
Sum	0	1

the definition



corresponding circuit
(half adder)

A	B	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

propositions corresponding to the truth table

$$\begin{aligned} \text{sum bit} & (\neg A \wedge B) \vee (A \wedge \neg B) \\ & \equiv A \oplus B \\ \text{carry bit} & (A \wedge B) \end{aligned}$$

Applications to Computers

Why use logic circuits in computers?

- on, off can be interpreted as 1, 0
- numbers can be represented in binary

0	1	0	0	0	1	1	0
2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
$\times 128$	$\times 64$	$\times 32$	$\times 16$	$\times 8$	$\times 4$	$\times 2$	$\times 1$
64				4	+ 2		
							70

- arithmetic can be performed on numbers

- can create truth tables which correspond to arithmetic involving binary numbers
- theorem 1.3 means a logic circuit can be constructed for those truth tables

- actually carrying out that process may only be practical for small circuits, but the goal of the proof is that it is possible

Full Adder

- after the first (rightmost) column, each column involves adding three bits

- the current bit from each number (A and B), plus the carry bit from the column to the right (Cin)

		carry into the second column			
0110	0111	0	10	110	0110
0110	0111	1	01	101	1101
					final result

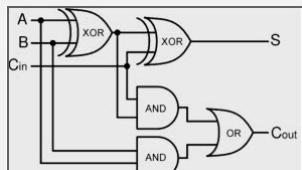
result for first column

Input			Output	
A	B	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

truth table for adding three bits

Full Adder

Input			Output	
A	B	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1



propositions corresponding to the truth table

sum bit

$(\neg A \wedge \neg B \wedge \text{Cin}) \vee$
 $(\neg A \wedge B \wedge \neg \text{Cin}) \vee$
 $(A \wedge \neg B \wedge \neg \text{Cin}) \vee$
 $(A \wedge B \wedge \text{Cin})$

carry bit

$(\neg A \wedge B \wedge \text{Cin}) \vee$
 $(A \wedge \neg B \wedge \text{Cin}) \vee$
 $(A \wedge B \wedge \neg \text{Cin}) \vee$
 $(A \wedge B \wedge \text{Cin})$

can use boolean algebra to simplify these propositions to

sum bit $-(A \oplus B) \oplus \text{Cin}$
 carry bit $-(\text{Cin} \wedge (A \oplus B)) \vee (B \wedge A)$

corresponding circuit

Adders

- string n full adders together to add n -bit numbers

- e.g. 2-bit adder $A1\ A0 + B1\ B0 = S1\ S0$

