

CPSC 229: Foundations of Computation • Spring 2026 27

Key Points

• terminology – logic gates, logic circuits, combinatorial
logic circuit, feedback loop, disjunctive normal form

• processes / algorithms
– building a logic circuit from a proposition
– constructing a proposition from a logic circuit
– using boolean algebra to simplify circuits

• theorems
– every compound proposition is computed by a logic circuit with

one output wire
– every combinatorial logic circuit with one output computes the

value of some compound proposition
– it is possible to build a proposition with only ∧, ∨, ¬ and in

disjunctive normal form for any truth table where at least one of
the output values is true

• applications to computers
CPSC 229: Foundations of Computation • Spring 2026 28

Logic Circuits

• logic gates are electronic components that compute
values of simple propositions

– input and output wires can be in one of two states (on, off),
which corresponds to the boolean values 𝕋, 𝔽

• logic circuits are built from connecting inputs and outputs
of logic gates to each other

CPSC 229: Foundations of Computation • Spring 2026 29

Constructing Circuits From Propositions

• algorithm
– if the proposition contains operators other than ∧, ∨, ¬, convert

the proposition to a logically equivalent one using only ∧, ∨, ¬
– determine the main operator – the one that is applied last
– add the corresponding logic gate to the circuit

– repeat the last two steps for each of the compound propositions
joined by this main operator, connecting their outputs to the
inputs of this main operator

– create one input for each propositional variable and connect
them to the appropriate inputs

CPSC 229: Foundations of Computation • Spring 2026 30

Constructing Circuits From Propositions

(a)

(d)

CPSC 229: Foundations of Computation • Spring 2026 31

Constructing Propositions From Circuits

• algorithm
– label the circuit’s inputs with the name of a propositional variable
– label each gate’s output with the proposition consisting of the

propositions represented by the gate’s inputs combined with
operator represented by the gate

– the output from the final logic gate is the proposition

A ∧ B

¬ C

(A ∧ B) ∧ ¬ C

¬ B ∨ C

¬ B

A ∧ B
¬ (A ∧ B)

¬ (A ∧ B) ∨ (¬ B ∨ C)

CPSC 229: Foundations of Computation • Spring 2026 32

Simplifying Circuits

• algorithm
– convert the circuit to propositional logic
– use boolean algebra to simplify the proposition
– construct the circuit corresponding to the simplified proposition

CPSC 229: Foundations of Computation • Spring 2026 33

Simplifying Circuits

• also be alert to the possibility of reusing outputs from
gates

CPSC 229: Foundations of Computation • Spring 2026 34

Theorems

• every compound proposition is computed by a logic circuit
with one output wire

• justification
– apply the algorithm for converting propositions into circuits

CPSC 229: Foundations of Computation • Spring 2026 35

Combinatorial Logic Circuits

• a combinatorial logic circuit has no feedback loops

• a feedback loop occurs when an output of a gate is
connected back to an input of the same gate

– circuits with feedback loops do not compute compound
propositions, but they are important for computer memories

CPSC 229: Foundations of Computation • Spring 2026 36

Theorems

• every combinatorial logic circuit with one output computes
the value of some compound proposition

• justification
– each wire represents the value of some proposition
– the proposition represented by an output wire consists of the

propositions represented by the input wires, joined by the logical
operation corresponding to the gate

A ∧ B

¬ C

(A ∧ B) ∧ ¬ C

¬ B ∨ C

¬ B

A ∧ B
¬ (A ∧ B)

¬ (A ∧ B) ∨ (¬ B ∨ C)

CPSC 229: Foundations of Computation • Spring 2026 37

Disjunctive Normal Form

• a compound proposition is in disjunctive normal form if
– it is a disjunction of conjunctions of simple terms, and

• disjunction = ∨, conjunction = ∧, simple term = p or ¬p

– each propositional variable occurs at most once in each
conjunction, and

• occurs as either p or ¬p, but not both

– each conjunction occurs at most once in the disjunction
• no repeats

CPSC 229: Foundations of Computation • Spring 2026 38

Theorems

• [theorem 1.3] it is possible to build a proposition with only
∧, ∨, ¬ and in disjunctive normal form for any truth table
where at least one of the output values is 𝕋

• justification (algorithm)
– for each row of the table

where the output value is 𝕋,
build a conjunction of simple
terms –

• for each variable p whose value
is true in that row, include p in
the conjunction

• for each variable q whose value
is false in that row, include ¬q
in the conjunction

– take the disjunction of all
such conjunctions

the conjunction is 𝕋 only for the specific
combination of values in that row

the disjunction is true only if at least one
of the disjunctions is 𝕋

CPSC 229: Foundations of Computation • Spring 2026 39

Theorems

• [theorem 1.3] it is possible to build a proposition with only
∧, ∨, ¬ and in disjunctive normal form for any truth table
where at least one of the output values is true

– what if all of the output values are false?

𝔽

𝔽

𝔽

this is a contradiction – not really
useful to express

workaround: accept 𝔽 as a proposition
in disjunctive normal form

CPSC 229: Foundations of Computation • Spring 2026 40

Applications to Computers

Why use logic circuits in computers?
• on, off can be interpreted as 1, 0
• numbers can be represented in binary

• arithmetic can be performed on numbers
– can create truth tables which correspond to arithmetic involving

binary numbers
– theorem 1.3 means a logic circuit can be constructed for those

truth tables
• actually carrying out that process may only be practical for small circuits,

but the goal of the proof is that it is possible

CPSC 229: Foundations of Computation • Spring 2026 41

Half Adder

• for adding two 1-bit numbers

sum bit
(¬A B∧) ∨ (A ∧ ¬B)
 ≡ A ⊕ B

carry bit
(A B)∧

https://projects.raspberrypi.org/en/projects/halfadder
https://www.elprocus.com/half-adder-and-full-adder/
https://delightlylinux.wordpress.com/2014/09/17/binary-lesson-9-binary-addition/

the corresponding truth table

propositions
corresponding to
the truth table

corresponding
circuit
(half adder)

the definition

CPSC 229: Foundations of Computation • Spring 2026 42

Full Adder

• after the first (rightmost) column, each column involves
adding three bits
– the current bit from each number (A and B), plus the carry bit

from the column to the right (Cin)

https://www.eecis.udel.edu/~davis/cpeg222/AssemblyTutorial/Chapter-08/ass08_3.html

truth table for adding three bits

CPSC 229: Foundations of Computation • Spring 2026 43https://www.eecis.udel.edu/~davis/cpeg222/AssemblyTutorial/Chapter-08/ass08_3.html

sum bit
(¬A ∧ ¬B Cin) ∧ ∨
(¬A B ∧ ∧ ¬Cin) ∨
(A ∧ ¬B ∧ ¬Cin) ∨
(A B Cin)∧ ∧

carry bit
(¬A B Cin) ∧ ∧ ∨
(A ∧ ¬B Cin) ∧ ∨
(A B ∧ ∧ ¬Cin) ∨
(A B Cin)∧ ∧

Full Adder

can use boolean algebra to simplify these
propositions to

sum bit – (A ⊕ B) ⊕ Cin
carry bit – (Cin (∧ A ⊕ B)) (B ∨ ∧ A)

propositions corresponding
to the truth table

corresponding circuit

CPSC 229: Foundations of Computation • Spring 2026 44

Adders

https://www.elprocus.com/half-adder-and-full-adder/

• string n full adders together to add n-bit numbers

• e.g. 2-bit adder

A0
B0

A1
B1

A0
B0 S0

S1

A1 A0 + B1 B0 = S1 S0

