Key Points

applications to computers

terminology — logic gates, logic circuits, combinatorial
logic circuit, feedback loop, disjunctive normal form

processes / algorithms

building a logic circuit from a proposition
constructing a proposition from a logic circuit
using boolean algebra to simplify circuits

theorems

every compound proposition is computed by a logic circuit with
one output wire

every combinatorial logic circuit with one output computes the
value of some compound proposition

it is possible to build a proposition with only A, v, = and in
disjunctive normal form for any truth table where at least one of
the output values is true

3

Constructing Circuits From Propositions

* algorithm

if the proposition contains operators other than A, v, —, convert
the proposition to a logically equivalent one using only A, v, —

determine the main operator — the one that is applied last
add the corresponding logic gate to the circuit
repeat the last two steps for each of the compound propositions

joined by this main operator, connecting their outputs to the
inputs of this main operator

create one input for each propositional variable and connect
them to the appropriate inputs

a) An(Bv-0) b) (p q)
c) (pVgvr)A(-pV gV -r) d) —(A,

v (B A —A)

CPSC 229: Foundations of Computation + Spring 2026 2

Logic Circuits

* logic gates are electronic components that compute
values of simple propositions

1> 1> =

AND gate OR gate NOT gate

input and output wires can be in one of two states (on, off),
which corresponds to the boolean values T, [F

* logic circuits are built from connecting inputs and outputs
of logic gates to each other

N —

output

B

C

CPSC 229: Foundations of Computation + Spring 2026 28

Constructing Circuits From Propositions

b) (pAg) A=(pr
V=gV) d) ~(AA(BV

()

(d)

Ell|~

El

CPSC 229: Foundations of Computation + Spring 2026 30

Constructing Propositions From Circuits

« algorithm
label the circuit’s inputs with the name of a propositional variable

label each gate’s output with the proposition consisting of the
propositions represented by the gate’s inputs combined with
operator represented by the gate

the output from the final logic gate is the proposition

A AnB
B (AAB)A-C
C

-C

—(AAB)Vv(=BvC)

CPSC 229: Foundations of Computation + Spring 2026 3L

Simplifying Circuits

« also be alert to the possibility of reusing outputs from
gates

CPSC 229: Foundations of Computation + Spring 2026 33

Simplifying Circuits

« algorithm
convert the circuit to propositional logic
use boolean algebra to simplify the proposition
construct the circuit corresponding to the simplified proposition

A
5 e e IS
B
C
s

B—

C

CPSC 229: Foundations of Computation + Spring 2026 32

Theorems

* every compound proposition is computed by a logic circuit
with one output wire

* justification
apply the algorithm for converting propositions into circuits

CPSC 229: Foundations of Computation + Spring 2026 34

Combinatorial Logic Circuits

* a combinatorial logic circuit has no feedback loops

 a feedback loop occurs when an output of a gate is
connected back to an input of the same gate

circuits with feedback loops do not compute compound
propositions, but they are important for computer memories

CPSC 229: Foundations of Computation + Spring 2026 35

Disjunctive Normal Form

* a compound proposition is in disjunctive normal form if
it is a disjunction of conjunctions of simple terms, and
« disjunction = v, conjunction = A, simple term = p or =p

each propositional variable occurs at most once in each
conjunction, and
+ occurs as either p or —p, but not both

each conjunction occurs at most once in the disjunction
° no repeats

(pAgATIVI(pPA—-gATAS)V (—p A —q)
(pA—q)
(AN=B)v(-AADB)
pV(=pAg)V (mpA—=g ATV (mp A —g A —r Aw)

CPSC 229: Foundations of Computation + Spring 2026 a7

Theorems

 every combinatorial logic circuit with one output computes
the value of some compound proposition

* justification
each wire represents the value of some proposition

the proposition represented by an output wire consists of the
propositions represented by the input wires, joined by the logical
operation corresponding to the gate

A AnB
B (AAB)A-C
C

-C

~(AAB)V(=BVC)

CPSC 229: Foundations of| —BvC 36

Theorems

* [theorem 1.3] it is possible to build a proposition with only
A, v, = and in disjunctive normal form for any truth table
where at least one of the output values is T

output

« justification (algorithm)
for each row of the table
where the output value is T,
build a conjunction of simple
terms —
« for each variable p whose value

is true in that row, include p in
the conjunction

« for each variable q whose value \
is false in that row, include —q
in the conjunction the conjunction is T only for the specific
take the disjunction of all } combination of values in that row

such conjunctions ™ the disjunction is true only if at least one
of the disjunctions is T

CPSC 229: Foundations of Computation + Spring 2026 38

(=pA-giT)

(=pAghr)

EIEICIEICIEIEIEIE]

GGG
I IEIEIEIE I
I I ICIEIEIE]

pPAGAT

Theorems

 [theorem 1.3] it is possible to build a proposition with only
A, v, = and in disjunctive normal form for any truth table
where at least one of the output values is true

what if all of the output values are false?

| P | g | |[output
ENE ;] this is a contradiction — not really
P e I useful to express
F[T[T| ¢ | .
TIFIF P workaround: accept [F as a proposition
T|F|T| F in disjunctive normal form
T|T|T F o
CPSC 229: Foundations of Computation « Spring 2026 39

Half Adder

« for adding two 1-bit numbers

b > 40 o
0 0 1 1 0o 0o 0 0
+0 +1w.+0 +1 |:> 01 1 0
[0 1 1 10 10 1 0

the corresponding truth table

Applications to Computers

Why use logic circuits in computers?
 on, off can be interpreted as 1, 0
* numbers can be represented in binary

0 1 [0 1 1 0

27 96 95 o4 93 92 ol 0
x128 x64 x32 x16 x8 x4 x2 xi

64 + 4 +2
70

+ arithmetic can be performed on numbers

can create truth tables which correspond to arithmetic involving
binary numbers

theorem 1.3 means a logic circuit can be constructed for those
truth tables

« actually carrying out that process may only be practical for small circuits, _
but the goal of the proof is that it is possible

Full Adder

« after the first (rightmost) column, each column involves
adding three bits

the current bit from each number (A and B), plus the carry bit
from the column to the right (Cin)

1

1

0

1

the definition

carry info the
second column

propositions
corresponding to

the truth table

A O0—t :
5 ol SuM sum bit
<::| (A AB)Vv (AA-B)
=A®B
L CARRY corresponding)
o carry bit
circuit (AAB)
(half adder)
https://projects.raspberrypi.org/en/projects/halfadder ——
https:/iwww.elprocus.com/half-adder-and-full-adder/
CPSC 229: Foundations of Computation + Spring 2026 a

https://delightlylinux.wordpress.com/2014/09/17/binary-lesson-9-binary-addition/

o
0110 0110
0111 0111

1

N

10
0110
0111

01

result for
first column

110
0110
0111

101

0110
0110
0111

1101
—

final result

CPSC 229: Foundations of Computation + Spring 2026 https://www.eecis.udel.ed

Input

Output

Carry

0

k|l k|l k|l o of of o>

ml wl o o »r| »]| & ©

r|lo|lkr|lo|rk|o|r]|o

o
= ol o| = o »| ~| 2|8

bl vl k| o »| o o

truth table for adding three bits

Tutorial/Chapt

08/ass08_3.html 42

Full Adder

propositions corresponding

to the truth table

Input Output
A B Cin Sum Carry
0 0 o 0 0
] 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1) 1
1 1 0 0 1
T 1 1 1 1

sum bit

(=AAN-BACin)v
(=A ABA=Cin) v
(A A-BA —=Cin) v

|:> (A A B A Cin)

carry bit

(A ABACin) v
(A A=BACin)v
(A ABA =Cin) v
(A A B A Cin)

Cin

b &
AND

4

can use boolean algebra to simplify these
propositions to

sum bit— (A ® B) ® Cin
carry bit—(Cin A (A®B)) v (B A A)

<:| corresponding circuit

CPSC 229: Foundations of Computation + Spring 2026

https:/iww.eecis.udel.edu/~davis/cpeg222/AssemblyTutorial/Chapter-08/ass08_3.html 43

Adders

« string n full adders together to add n-bit numbers

° e.g. 2-bit adder

AO 1
BO 4

1B il —

in

2

CPSC 229: Foundations of Computation + Spring 2026

Al
Bl

A1 A0 + B1 B0 =S1 S0

o)

AND

S1

D

hitps://www.elprocus.com/half-adder-and-full-adder/

