CPSC 229, Spring 2026 Application Lab #1: Logic Circuits

This lab explores the connection between propositional logic and computa-
tion. It is due in class Friday, March 13 but earlier handins are welcome
and encouraged.

While you may discuss ideas and strategies for problems with other students,
you should always make the first attempt on a problem yourself and you
must write up your own solutions in your own words. You may
not collaboratively write solutions or copy a solution that one person in
the group writes up. You also may not look for, copy, or use solutions
from other sources, including from generative Al like ChatGPT, even if
you make changes. There’s no such thing as using someone else’s solution
for a problem “as an example” for writing your own.

Adders were discussed in class. The first exercise has you implement a 4-bit adder to
get familiar with the tool you’ll be using to create and test your circuits. The other
exercises introduce several other computationally useful circuits — for each, you’ll first
build a truth table defining the computation and then implement it as a circuit.

e Use the xLogicCircuits tool to draw and test your logic circuits. URL:
https://math.hws.edu/eck/js/xLogicCircuits/xLogicCircuits.html

Click the link at the top of the page for instructions for using the tool — look over
the Brief Instructions, Logic Gates and Logic Circuits, Subcircuits, and Buttons
sections.

e Your diagrams should be neat and organized. You do not need to spend lots of
time making them perfect, but try to avoid tons of crossing lines and follow the
conventions that inputs go on the left side and outputs on the right.

e [t is recommended that you create a directory ~/cs229 to hold your files for this
class, and a subdirectory ~/cs229/1ab1 to hold your files for this assignment.

e Create a new circuit (use the “New” button) for each exercise, then add on to it
for each part within one exercise.

e Name your circuits using the “Title” box before saving. Name them exactly as di-
rected and do not include spaces. By default, files are saved to your ~/Downloads
directory. It is a good idea to promptly copy them to your ~/cs229/1ab1l direc-
tory.

e Hand in a hardcopy of your written answers. Hand in your circuits by copying
your ~/cs229/1abl directory (and its contents) to your handin folder
/classes/cs229/username.



CPSC 229, Spring 2026 Application Lab #1: Logic Circuits

1. Adders were discussed in class, but the implementation described made use of
XOR gates. xLogicCircuits has only AND, OR, and NOT gates.

(a) Create a logic circuit for the XOR (@) operation:

(i) Write a complete truth table for the XOR operation.

(ii) Write the DNF (disjunctive normal form) proposition corresponding to
this table.

(iii) If possible, simplify this proposition without introducing operations
other than A, V, and —. Show your work as a series of logical equiva-
lences with justifications.

(iv) Create a logic circuit corresponding to your (simplified) proposition.
Test your circuit by turning the power on (the “Power” checkbox is
checked) and making sure that the output is correct for every combina-
tion of inputs. Red indicates ON/1 values.

(v) When your circuit is correct, save it with the title xor (all lowercase).
Note that the saved filename will be xor.txt.

(b) Iconify your XOR circuit, then use it to create a logic circuit for the full
adder discussed in class. You can find the propositions on the second “Full
Adder” slide from Wednesday’s class. Save the full adder with the title
adderl.

(¢) Iconmify your full adder circuit, then use it to create a logic circuit for a 4-bit
adder. (The “Adders” slide from Wednesday’s class shows how to use two
full adders to create a 2-bit adder — extend this idea.) Save your 4-bit
adder with the title adder4.

2. Comparators are another fundamental building block in computer systems. They
are used to tell whether one value is larger than, smaller than, or equal to another.
This kind of comparison is useful in many familiar programming tasks, such as
deciding which if statement branch to take, ordering items in a list, or choosing
which task should be handled first. At the hardware level, multi-bit comparators
are built by combining 1-bit comparators, making the 1-bit case an essential
starting point.

Consider a 1-bit comparator with inputs A and B. There are three outputs:

o [: 1if A < B and 0 otherwise
o [7: 1if A= B and 0 otherwise
o (: 1if A > B and 0 otherwise

(a) Write a complete truth table which includes output columns L, E, and G.
(b) Write the DNF proposition resulting from this truth table.



CPSC 229, Spring 2026 Application Lab #1: Logic Circuits

(c) If possible, simplify this proposition without introducing operations other
than A, V, @, and —. Show your work as a series of logical equivalences
with justifications.

(d) Create a logic circuit corresponding to your (simplified) proposition, test it,
and save it with the title comparatorl (all lowercase). If your proposition
makes use of @, start a new circuit (with the “New” button), load your xor
file from the previous problem, iconify it, and go from there.

4-bit comparator: Coming soon!

3. Parity checking is a simple but widely used technique for detecting errors in
digital systems. Memory systems, communication buses, and storage devices
often use parity bits to detect whether a single bit has been flipped due to noise
or hardware faults. While parity cannot correct errors, it provides a low-cost way
to detect many common failures.

Parity checking works by computing an extra bit, called a parity bit, from the
data bits so that the total number of 1s in the combined data and parity bits is
even. This means that the parity bit will be 1 if the data bits involve an odd
number of 1s and 0 otherwise. When the data is later read or received, the system

recomputes the parity from the data bits and compares it to the stored parity
bit.

(a) Write a complete truth table to compute parity for three data bits A, B, C.
The output should be 1 if A, B, and C involve an odd number of 1s and 0
otherwise.

(b) Write the DNF proposition resulting from this truth table.
(c) Implement and test this circuit, saving it as parity3.

(d) Write a truth table which uses this parity computation to check the parity
bit. There will be four inputs (three data bits A, B, C' and a parity bit P).
Add a column parity(A, B, C') whose value is the computed parity for A, B,
and C. The output should be 1 if parity(A, B,C) and P are the same and
0 otherwise.

(e) Write the DNF proposition resulting from this truth table. Use P and the
compound proposition parity(A, B, C) as building blocks rather than A, B,
and C' directly.

(f) Iconify your parity computation circuit, then use it to create the parity
checker circuit. Test your circuit, then save the result with the title pcheck3.

9-bit parity checker: Coming soon!



