
CPSC 327, Spring 2025 Homework #1

This homework covers big-Oh and analysis of algorithms. It is due in class
Friday, February 7.

Write your solutions carefully — your work should be neat, readable, and
organized. Be sure to show your work / provide support for your answers
— don’t simply state an answer without any indication of where it came
from.

See the Policies page on the course website for information about revise-
and-resubmit, late work, and academic integrity as it applies to homework.

1. (a) For each of the following functions, find a simple function g such that f(n) =
Θ(g(n) (or T (n) = Θ(g(n))). Provide support for your answers — show your
work, state what rule you are applying or step you are doing, etc. Don’t
just write down g by itself!

Keep in mind the various strategies — algebraic simplification (including
simplifying logs and exponents), using the sums and recurrence relations
tables, and dropping constant multipliers and lower-order terms.

100n(i) 4n2 log2 n(ii)

2n(iii) n (log2 n)2(iv)

n1/3 + log n(v) n log10 n
2(vi)

10n3 + 2n5(vii) 2n−1(viii)

n2 + log n(ix) 10n2 log10 n(x)

n!(xi)

n∑
i=0

2i(xii)
n2∑
i=1

1
i

(xiii)

n∑
i=1

3n
i

(xiv)

n
2∑

i=1

(i + log n)(xv)

n∑
i=1

log i(xvi) log2

(
n∑

i=0

2i

)
(xvii)

T (n) = 2T (n/2) + n log2 n(xviii) T (n) = 2T (n/3) + 1(xix)

T (n) = 5T (n/4) + n(xx) T (n) = 7T (n/7) + n(xxi)

T (n) = 9T (n/3) + n2(xxii) T (n) = 9T (n/4) + n2(xxiii)

T (n) = T (n− 2) + 1(xxiv)

(b) Use the g functions you’ve found to order the functions in the previous part
by growth rate, from slowest growing to fastest growing. If several functions
have the same growth rate, indicate that in your ordering. For functions
not in the known ordering of common functions from class, provide support
for your answers — indicate how you decided where those functions belong.

Keep in mind strategies for comparing growth rates to determine O, Ω, Θ
— eliminating common factors, plotting the functions, and identifying c and
n0 according to the definitions.

CPSC 327, Spring 2025 Homework #1

2. Give the worst-case running time for each of the following sets of loops. Explicitly
utilize that the total time for a loop is the sum of the time taken by each iteration
— write the sum(s) and use the sums table to get the big-Oh for each. Assume
that the [loop body] steps take Θ(1) time.

(a) for i = 1 to n do

[loop body]

(b) for i = 1 to n do

for j = 1 to i do

[loop body]

(c) for i = 1 to n do

for j = 1 to i do

for k = j to i+j do

[loop body]

(d) for i = 1 to n do

for j = 1 to i do

for k = j to i+j do

for m = 1 to i+j-k do

[loop body]

3. Bubble sort is a simple sorting algorithm which works by repeatedly comparing
adjacent elements and swapping them if they are out of order.

algorithm bubbleSort (A, n) :

input: array A storing n items

output: items in A are sorted in increasing order

repeat

swapped � false

for (j � 0 ; j < n-1 ; j++) do

if A[j] > A[j+1] then // if elements are reversed...

temp � A[j] // ...swap them

A[j] � A[j+1]

A[j+1] � temp

swapped � true

until swapped is false

Give the Θ running time for bubble sort. Identify the best- and worst-case times
separately if there is a difference. Show your work / provide support for your
answer(s) — don’t just give a Θ without explanation.

CPSC 327, Spring 2025 Homework #1

4. We might try to improve bubble sort by allowing elements that are far out of
place to move more than one spot at a time — ’gap’ defines this amount, and
shrinks as elements (presumably) get closer to their final spots as the algorithm
progresses. The idea is to repeatedly “comb” through the array with increasingly
finer-toothed combs, swapping elements hit by the comb’s teeth if they are out
of order.

algorithm combSort (A, n) :

input: array A storing n items

output: items in A are sorted in increasing order

gap � n

repeat

gap � gap/s

swapped � false

for (j � 0 ; j < n-gap ; j++) do

if A[j] > A[j+gap] then // if elements are reversed...

temp � A[j] // ...swap them

A[j] � A[j+gap]

A[j+gap] � temp

swapped � true

until gap == 1 and swapped is false

Give the Θ running time for comb sort. Identify the best- and worst-case times
separately if there is a difference. Show your work / provide support for your
answer(s) — don’t just give a Θ without explanation.

5. A matrix is a 2D array of numbers. A key operation involving matrices is matrix
multiplication.

This problem involves two algorithms for matrix multiplication. Both algorithms
involving partitioning, in which an n × n matrix is split into four n/2 × n/2
matrices as shown.

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
, C =

[
C11 C12

C21 C22

]
The operations extractBlock, assembleBlocks, add, and subtract referenced
in the pseudocode below all take Θ(n2) time when applied to n× n matrices.

(a) The basic algorithm for multiply(A,B) computes C as follows:[
C11 C12

C21 C22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
This can be written in pseudocode as shown:

CPSC 327, Spring 2025 Homework #1

algorithm basicMultiply (A, B) :

input: A, B are nxn arrays

output: C = AxB

A11 = extractBlock(A,0,0)

A12 = extractBlock(A,0,n/2)

A21 = extractBlock(A,n/2,0)

A22 = extractBlock(A,n/2,n/2)

B11 = extractBlock(B,0,0)

B12 = extractBlock(B,0,n/2)

B21 = extractBlock(B,n/2,0)

B22 = extractBlock(B,n/2,n/2)

C11 = add(basicMultiply(A11,B11),basicMultiply(A12,B21))

C12 = add(basicMultiply(A11,B12),basicMultiply(A12,B22))

C21 = add(basicMultiply(A21,B11),basicMultiply(A22,B21))

C22 = add(basicMultiply(A21,B12),basicMultiply(A22,B22))

C = assembleBlocks(C11,C12,C21,C22)

Write the recurrence relation for and give the running time of basicMultiply.

(b) A more clever approach for multiply(A,B) instead computes C as follows:[
C11 C12

C21 C22

]
=

[
M1 + M4 −M5 + M7 M3 + M5

M2 + M4 M1 −M2 + M3 + M6

]
where the Mi are n/2 × n/2 matrices computed as follows:

M1 = (A11 + A22)(B11 + B22)
M2 = (A21 + A22)B11

M3 = A11(B12 −B22)
M4 = A22(B21 −B11)
M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 + B12)
M7 = (A12 − A22)(B21 + B22)

This can be written in pseudocode as shown:

algorithm cleverMultiply (A, B) :

input: A, B are nxn arrays

output: C = AxB

A11 = extractBlock(A,0,0)

A12 = extractBlock(A,0,n/2)

A21 = extractBlock(A,n/2,0)

CPSC 327, Spring 2025 Homework #1

A22 = extractBlock(A,n/2,n/2)

B11 = extractBlock(B,0,0)

B12 = extractBlock(B,0,n/2)

B21 = extractBlock(B,n/2,0)

B22 = extractBlock(B,n/2,n/2)

M1 = cleverMultiply(add(A11,A22),add(B11,B22))

M2 = cleverMultiply(add(A21,A22),B11)

M3 = cleverMultiply(A11,subtract(B12,B22))

M4 = cleverMultiply(A22,subtract(B21,B11))

M5 = cleverMultiply(add(A11,A12),B22)

M6 = cleverMultiply(subtract(A21,A11),add(B11,B12))

M7 = cleverMultiply(subtract(A12,A22),add(B21,B22))

C11 = subtract(add(M1,M4),add(M5,M7))

C12 = add(M3,M5)

C21 = add(M2,M4)

C22 = add(subtract(M1,M2),add(M3,M6))

C = assembleBlocks(C11,C12,C21,C22)

Write the recurrence relation for and give the running time of cleverMultiply.

