
  

 

Analysis of Algorithms
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Motivation

A good algorithm is
correct,
efficient, and
easy to implement.

• answering “how much time/space does this algorithm 
take?” and “can we do better?” requires a measure of the 
time/space requirements
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Key Points

We want to compare algorithms, not programs.

• the elapsed time of a running program depends on many 
factors unrelated to the algorithm
– speed of computer
– computer architecture
– choice of language, skill/cleverness of programmer, compiler 

optimizations

• implementing and debugging a program is time 
consuming
– requires too many details
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RAM Model of Computation

Assumptions – 

• each simple operation takes exactly one time step
– arithmetic, boolean, logical operations; =; if; subroutine calls

=, if is the assignment or branch itself, not the evaluation of expressions 
or the execution of the body of a branch
subroutine call is just the call and return, not the execution of the 
subroutine body

• each memory access takes exactly one time step

• expressions and blocks are not simple operations
• loops are not simple operations

– composed of (many) simple operations
– time required is the sum of the time required for each simple 

operation
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Key Points

Those assumptions are actually false with respect to real 
computers.

Even though our analyses will be based on a model of 
computation that is not how real computers work, all is not 
lost – 

• still meaningful
– it is difficult to find a case where it gives misleading results

• simplifies analysis
– allows for reasoning about algorithms in a language- and 

machine-independent manner
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Key Points

We are more interested in how quickly the running time 
of an algorithm increases as the size of the input 
increases than in how long the algorithm will take on a 
particular input instance.

• still meaningful
– a single input instance may not be all that informative anyway
– any algorithm will do when the input is small – it's what happens 

for big inputs that matters

• simplifies analysis
– don't need to count precisely – can focus on how the number of 

steps depends on aspects of the input
– can consider (only) best and worst-case bounds

• fewer cases to consider, and easier to work with an input instance with 
specific properties 
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Key Points

We are more interested in categorizing algorithms into a 
few common classes than determining specific growth rate 
functions.

• still meaningful
– the differences within one class are far less than the differences 

between classes

• simplifies analysis
– can drop constant factors and lower order terms (eliminating 

distracting bumps)
– can analyze algorithm at a higher level of abstraction 

(pseudocode or even natural language description rather than 
code)
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Understanding Limitations

• be careful not to confuse growth rate with speed
– the speed refers to the running time for a particular input

• faster speed = takes less time

– the growth rate refers to how quickly the running time increases
• slower growth rate means the running time doesn’t increase as quickly – 

the running time is smaller/shorter/faster for longer

– the question is how an algorithm with a slower growth rate could 
take more time on an input than one with a faster growth rate

faster 
time

faster 
growth 
rate
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Understanding Limitations

• n is small – constant factors and lower-order 
terms have a greater impact on running time 
for small n

• there could be different environments – 
language, programmer cleverness, compiler 
optimizations, computer speed, … 

• “growth rate of algorithm” typically 
refers to the growth rate of the worst-
case running time
– input instance used may not be worst case 

for B

how can an algorithm A with a slower growth 
rate could take more time on an input than 
algorithm B with a faster growth rate?

A

B

worst 
case

best case
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Understanding Limitations

Or it might not have been a fair test – 

• different inputs used e.g. A’s input was bigger 
• (really) inefficient implementation of A

– e.g. looping through whole array instead of only accessing one 
slot

• A takes more space, making it slower
– each memory access is assumed to take one time step so the 

running time puts a limit on how much space A can use
– A’s computer could be pushed into swapping while B’s is not

• constant factors could mean that A’s memory usage exceeds B’s
• A’s computer could have less memory

how can an algorithm A with a slower growth 
rate could take more time on an input than 
algorithm B with a faster growth rate?

A

B
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Definitions

• O gives an upper bound on a function's growth rate
• Ω gives a lower bound on a function's growth rate
• Θ gives a tight bound on a function's growth rate

notation meaning definition

f(n) = O(g(n)) c g(n) is an upper 
bound on f(n)

there exists c > 0 and n0 > 0 such 
that f(n) ≤ c g(n) for all n ≥ n0

f(n) = Ω(g(n)) c g(n) is an lower 
bound on f(n)

there exists c > 0 and n0 > 0 such 
that f(n) ≥ c g(n) for all n ≥ n0

f(n) = Θ(g(n)) c1 g(n) is an upper 
bound on f(n)
c2 g(n) is an lower 
bound on f(n)

there exists c1 > 0, c2 > 0, and   
n0 > 0 such f(n) ≤ c1 g(n) and   
f(n) ≥ c2 g(n) for all n ≥ n0
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Understanding Definitions

notation meaning definition

f(n) = O(g(n)) c g(n) is an upper bound on f(n) there exists c > 0 and n0 > 0 such that 
f(n) ≤ c g(n) for all n ≥ n0

f(n) = Ω(g(n)) c g(n) is an lower bound on f(n) there exists c > 0 and n0 > 0 such that 
f(n) ≥ c g(n) for all n ≥ n0

f(n) = Θ(g(n)) c1 g(n) is an upper bound on f(n)
c2 g(n) is an lower bound on f(n)

there exists c1 > 0, c2 > 0, and n0 > 0 
such that f(n) ≤ c1 g(n) and f(n) ≥ c2 g(n) 
for all n ≥ n0

O gives an upper bound on a function's growth rate
Ω gives a lower bound on a function's growth rate
Θ gives a tight bound on a function's growth rate
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3n+100 = O(10n-log n)

because 
3n+100 ≤ c(10n-log n) 
for c = 1 and n > 15

3n+100 = Ω(10n-log n)

because 
3n+100 ≥ c(10n-log n) 
for c = 0.25 and n > 0

thus 
3n+100 = Θ(10n-log n)

because
3n+100 ≤ c1(10n-log n) and 
3n+100 ≥ c2(10n-log n) for 
c1 = 1, c2 = 0.25, and n > 15 CPSC 327: Data Structures and Algorithms  •  Spring 2025 14

(log n)2 + 5n log n = Ω(2n)

because 
(log n)2 + 5n log n ≥ 2n 
for c = 1 and n > 5

3n2+n3 = O(3n-5n3)

because 
3n2+n3 ≤ c(3n-5n3) 
for c = 1 and n > 8


