Analysis of Algorithms

Key Points

We want to **compare algorithms**, not programs.

- the elapsed time of a running program depends on many factors unrelated to the algorithm
 - speed of computer
 - computer architecture
 - choice of language, skill/cleverness of programmer, compiler optimizations
- implementing and debugging a program is time consuming
 - requires too many details

CPSC 327: Data Structures and Algorithms • Spring 2025

Motivation

A good algorithm is correct, efficient, and easy to implement.

 answering "how much time/space does this algorithm take?" and "can we do better?" requires a measure of the time/space requirements

RAM Model of Computation

Assumptions -

CPSC 327: Data Structures and Algorithms . Spring 2025

- each simple operation takes exactly one time step

 arithmetic, boolean, logical operations; =; if; subroutine calls
 - \bigstar =, if is the assignment or branch itself, not the evaluation of expressions or the execution of the body of a branch
 - ▲ or the execution of the body of a branch subroutine call is just the call and return, not the execution of the subroutine body
 - subroutine body
- each memory access takes exactly one time step
- expressions and blocks are not simple operations
- loops are not simple operations
 - composed of (many) simple operations
 - time required is the sum of the time required for each simple operation

CPSC 327: Data Structures and Algorithms • Spring 2025

Key Points

Those assumptions are actually false with respect to real computers.

Even though our analyses will be based on a model of computation that is $\ensuremath{\text{not}}$ how real computers work, all is not lost –

- still meaningful
 - it is difficult to find a case where it gives misleading results
- simplifies analysis

CPSC 327: Data Structures and Algorithms . Spring 2025

 allows for reasoning about algorithms in a language- and machine-independent manner

Key Points

We are more interested in **categorizing algorithms into a few common classes** than determining specific growth rate functions.

- still meaningful
 - the differences within one class are far less than the differences between classes
- simplifies analysis
 - can drop constant factors and lower order terms (eliminating distracting bumps)
 - can analyze algorithm at a higher level of abstraction (pseudocode or even natural language description rather than code)

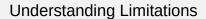
CPSC 327: Data Structures and Algorithms • Spring 2025

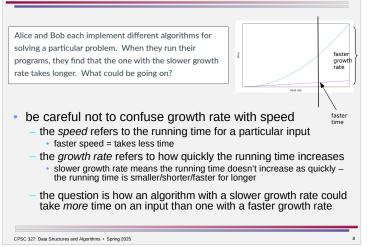
Key Points

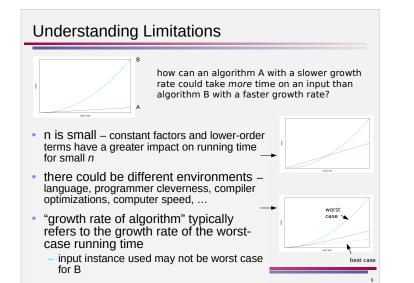
We are more interested in **how quickly the running time** of an algorithm increases as the size of the input increases than in how long the algorithm will take on a particular input instance.

- still meaningful
 - a single input instance may not be all that informative anyway
 - any algorithm will do when the input is small it's what happens for big inputs that matters
- simplifies analysis
 - don't need to count precisely can focus on how the number of steps depends on aspects of the input
 - can consider (only) best and worst-case bounds
 - fewer cases to consider, and easier to work with an input instance with specific properties

CPSC 327: Data Structures and Algorithms • Spring 2025







Definitions

- O gives an *upper bound* on a function's growth rate
- Ω gives a *lower bound* on a function's growth rate
- O gives a *tight bound* on a function's growth rate

notation	meaning	definition
f(n) = O(g(n))	c g(n) is an upper bound on f(n)	there exists $c > 0$ and $n_0 > 0$ such that $f(n) \le c g(n)$ for all $n \ge n_0$
$f(n) = \Omega(g(n))$	c g(n) is an lower bound on f(n)	there exists $c > 0$ and $n_0 > 0$ such that $f(n) \ge c g(n)$ for all $n \ge n_0$
$f(n) = \Theta(g(n))$	$c_1 g(n)$ is an upper bound on f(n) $c_2 g(n)$ is an lower bound on f(n)	there exists $c_1 > 0$, $c_2 > 0$, and $n_0 > 0$ such $f(n) \le c_1 g(n)$ and $f(n) \ge c_2 g(n)$ for all $n \ge n_0$
CPSC 327: Data Structures and Alg	orithms • Spring 2025	1



- each memory access is assumed to take one time step so the running time puts a limit on how much space A can use
- A's computer could be pushed into swapping while B's is not • constant factors could mean that A's memory usage exceeds B's

10

A's computer could have less memory

Understanding Definitions

For each of the following pairs of functions, indicate whether f = O(g), $f = \Omega(g)$, or $f = \Theta(g)$.

a. f(n) = 3n + 100, $g(n) = 10n - \log n$ [pairA] b. $f(n) = (\log n)^2 + 5n \log n$, g(n) = 2n [pairB] c. $f(n) = 3n^2 + n^3$, $g(n) = 3^n - 5n^3$ [pairC]

O gives an *upper bound* on a function's growth rate Ω gives a *lower bound* on a function's growth rate Θ gives a *tight bound* on a function's growth rate

notation	meaning	definition
f(n) = O(g(n))	c g(n) is an upper bound on f(n)	there exists $c > 0$ and $n_0 > 0$ such that $f(n) \le c g(n)$ for all $n \ge n_0$
$f(n) = \Omega(g(n))$	c g(n) is an lower bound on f(n)	there exists $c > 0$ and $n_0 > 0$ such that $f(n) \ge c g(n)$ for all $n \ge n_0$
$f(n) = \Theta(g(n))$	$c_1 g(n)$ is an upper bound on $f(n)$ $c_2 g(n)$ is an lower bound on $f(n)$	there exists $c_1 > 0$, $c_2 > 0$, and $n_0 > 0$ such that $f(n) \le c_1 g(n)$ and $f(n) \ge c_2 g(n)$ for all $n \ge n_0$

