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Implications for Algorithm Design

Θ running time on fast 
computer

characteristics of typical 
tasks with the specified 
running time

1 n is irrelevant examine only a fixed number of 
things regardless of input size

log n any n is fine repeatedly eliminate a fraction of 
the search space

n
still practical for                 
n = 1,000,000

examine each object a fixed 
number of times

n log n
divide-and-conquer with linear 
time per step
mergesort, quicksort

n2 usable up to n = 10,000
hopeless for n > 1,000,000

examine all pairs
insertion sort, selection sort

n3 examine all triples

2n impractical for n > 40 enumerate all subsets

n! useless for n ≥ 20 enumerate all permutations
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Big-Oh From Algorithms
use the table on the 
previous slide

sort, then examine each 
object a fixed number of 
times  → Θ(n log n) + Θ(n) 
= Θ(n log n)

examine each object a 
fixed number of times, 
then examine only a fixed 
number of things   → Θ(n) 
+ Θ(1) = Θ(n)

for each object, examine 
each object a fixed 
number of times  → Θ(n) x 
Θ(n) = Θ(n2)
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   B         A         C

suitability for n = 25, 2500, 250,000, 250,000,000
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Questions

How do you choose between multiple algorithms with 
suitable big-Ohs?

• if n = 1,000, all three of these are potentially suitable

• consider other factors
– is there already a library implementation?  
– if you have to implement something, which is simpler to 

implement (and implement correctly)?
– are there significant differences in memory usage?
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Questions

O(n log n) is pretty practical – why couldn’t you just use 
mergesort or quicksort for a very large array?

• real systems have only a limited amount of memory
– if the array is too large to fit into memory, it is kept on disk and 

parts are swapped into memory when needed

• if successive accesses are scattered throughout the 
array, the system spends all of its CPU time swapping 
things in and out of memory instead of actually sorting
– the assumption that each memory access is one time step also 

breaks down

• need algorithms exhibiting locality of access to minimize 
swaps
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Key Points

• the running time of a series of simple operations is Θ(1)

• the running time of a loop is the sum of the time taken by 
each iteration
– if the time is the same for each iteration, the total time reduces to 

the number of repetitions times the time per iteration

• the running time of a recursive function is expressed with 
a recurrence relation

• logs and exponents come into play when something is 
repeatedly divided or multiplied
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Dealing With Sums
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Big-Oh for Sums
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Big-Oh From Algorithms

sum  0←
for i  0..n-1←
  sum += arr[i]
dup  sum-n(n-1)/2←

for i  0..n-1←
  for j  i+1..n-1←
    if arr[i] == arr[j]
      dup  arr[j]←
      break

sort(arr)
for i  0..n-2 ←
  if arr[i] == arr[i+1]
    dup  arr[i]←
    break
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Log Rules

definition of log:
if x = logb(n) then n = bx

log b(x )=
log d(x )

log d(b)
dc log 2 (n )=nc log2 (d)

b1 /2=√b
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Logarithms and Exponents

• tips
– know the growth rate ordering of common functions: 1, log n, n, 

n log n, n2, 2n, n!
– simplify other functions to make them more familiar
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Solving Recurrence Relations

T(n) = a T(n-b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the number of subproblems and f(n).

a f(n) behavior solution

> 1 any
base case dominates
(too many leaves) T(n) = Θ(an/b)

1 ≥ 1 all levels are important T(n) = Θ(n f(n))
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Solving Recurrence Relations

T(n) = a T(n/b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the relationship between the number of 
subproblems, the problem size, and f(n).

(log 
a)/(log 
b) vs c

d behavior solution

< any
top level dominates – more work 
splitting/combining than in subproblems 
(root too expensive)

T(n) = Θ(f(n))

= > -1
all levels are important – log n steps to 
get to base case, and roughly same 
amount of work in each level

T(n) = Θ(f(n) log n)

= < -1 base cases dominate – so many 
subproblems that taking care of all the 
base cases is more work than 
splitting/combining (too many leaves)

T(n) = Θ(n(log a)/(log b))
> any
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Big-Oh for Recurrence Relations
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The Limits of Asymptotic Complexity

• big-Oh provides a useful but big picture view
– allows comparing algorithms rather than programs
– can determine if an algorithm is fast enough to be practical

• big-Oh is not suitable for “which is faster?” comparisons 
between algorithms whose running times belong to the 
same growth rate class
– specific implementation details, constant factors, and lower-order 

terms matter
– ways in which real systems differ from the RAM model matter

– actual performance depends on the specific inputs typical for the 
application


