

CPSC 327: Data Structures and Algorithms • Spring 2025 26

Implications for Algorithm Design

Θ running time on fast
computer

characteristics of typical
tasks with the specified
running time

1 n is irrelevant examine only a fixed number of
things regardless of input size

log n any n is fine repeatedly eliminate a fraction of
the search space

n
still practical for
n = 1,000,000

examine each object a fixed
number of times

n log n
divide-and-conquer with linear
time per step
mergesort, quicksort

n2 usable up to n = 10,000
hopeless for n > 1,000,000

examine all pairs
insertion sort, selection sort

n3 examine all triples

2n impractical for n > 40 enumerate all subsets

n! useless for n ≥ 20 enumerate all permutations
CPSC 327: Data Structures and Algorithms • Spring 2025 27

Big-Oh From Algorithms
use the table on the
previous slide

sort, then examine each
object a fixed number of
times → Θ(n log n) + Θ(n)
= Θ(n log n)

examine each object a
fixed number of times,
then examine only a fixed
number of things → Θ(n)
+ Θ(1) = Θ(n)

for each object, examine
each object a fixed
number of times → Θ(n) x
Θ(n) = Θ(n2)

CPSC 327: Data Structures and Algorithms • Spring 2025 28

 B A C

suitability for n = 25, 2500, 250,000, 250,000,000

CPSC 327: Data Structures and Algorithms • Spring 2025 29

Questions

How do you choose between multiple algorithms with
suitable big-Ohs?

• if n = 1,000, all three of these are potentially suitable

• consider other factors
– is there already a library implementation?
– if you have to implement something, which is simpler to

implement (and implement correctly)?
– are there significant differences in memory usage?

CPSC 327: Data Structures and Algorithms • Spring 2025 30

Questions

O(n log n) is pretty practical – why couldn’t you just use
mergesort or quicksort for a very large array?

• real systems have only a limited amount of memory
– if the array is too large to fit into memory, it is kept on disk and

parts are swapped into memory when needed

• if successive accesses are scattered throughout the
array, the system spends all of its CPU time swapping
things in and out of memory instead of actually sorting
– the assumption that each memory access is one time step also

breaks down

• need algorithms exhibiting locality of access to minimize
swaps

CPSC 327: Data Structures and Algorithms • Spring 2025 31

Key Points

• the running time of a series of simple operations is Θ(1)

• the running time of a loop is the sum of the time taken by
each iteration
– if the time is the same for each iteration, the total time reduces to

the number of repetitions times the time per iteration

• the running time of a recursive function is expressed with
a recurrence relation

• logs and exponents come into play when something is
repeatedly divided or multiplied

CPSC 327: Data Structures and Algorithms • Spring 2025 32

Dealing With Sums

from Jeff Edmonds, How to Think About Algorithms CPSC 327: Data Structures and Algorithms • Spring 2025 33

Big-Oh for Sums

CPSC 327: Data Structures and Algorithms • Spring 2025 34

Big-Oh From Algorithms

sum 0←
for i 0..n-1←
 sum += arr[i]
dup sum-n(n-1)/2←

for i 0..n-1←
 for j i+1..n-1←
 if arr[i] == arr[j]
 dup arr[j]←
 break

sort(arr)
for i 0..n-2 ←
 if arr[i] == arr[i+1]
 dup arr[i]←
 break

CPSC 327: Data Structures and Algorithms • Spring 2025 35

Log Rules

definition of log:
if x = logb(n) then n = bx

log b(x)=
log d(x)

log d(b)
dc log 2 (n)=nc log2 (d)

b1 /2=√b

CPSC 327: Data Structures and Algorithms • Spring 2025 36

Logarithms and Exponents

• tips
– know the growth rate ordering of common functions: 1, log n, n,

n log n, n2, 2n, n!
– simplify other functions to make them more familiar

CPSC 327: Data Structures and Algorithms • Spring 2025 37

Solving Recurrence Relations

T(n) = a T(n-b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the number of subproblems and f(n).

a f(n) behavior solution

> 1 any
base case dominates
(too many leaves) T(n) = Θ(an/b)

1 ≥ 1 all levels are important T(n) = Θ(n f(n))

CPSC 327: Data Structures and Algorithms • Spring 2025 38

Solving Recurrence Relations

T(n) = a T(n/b) + f(n) where f(n) = Θ(nc logd n)

Cases are based on the relationship between the number of
subproblems, the problem size, and f(n).

(log
a)/(log
b) vs c

d behavior solution

< any
top level dominates – more work
splitting/combining than in subproblems
(root too expensive)

T(n) = Θ(f(n))

= > -1
all levels are important – log n steps to
get to base case, and roughly same
amount of work in each level

T(n) = Θ(f(n) log n)

= < -1 base cases dominate – so many
subproblems that taking care of all the
base cases is more work than
splitting/combining (too many leaves)

T(n) = Θ(n(log a)/(log b))
> any

CPSC 327: Data Structures and Algorithms • Spring 2025 39

Big-Oh for Recurrence Relations

CPSC 327: Data Structures and Algorithms • Spring 2025 40

The Limits of Asymptotic Complexity

• big-Oh provides a useful but big picture view
– allows comparing algorithms rather than programs
– can determine if an algorithm is fast enough to be practical

• big-Oh is not suitable for “which is faster?” comparisons
between algorithms whose running times belong to the
same growth rate class
– specific implementation details, constant factors, and lower-order

terms matter
– ways in which real systems differ from the RAM model matter

– actual performance depends on the specific inputs typical for the
application

