

CPSC 327: Data Structures and Algorithms • Spring 2025 12

Data Structures

There are two main kinds of data structures –

• contiguous structures occupy consecutive memory
locations
– e.g. arrays

• linked structures consist of separate chunks of memory
connected by references or pointers
– e.g. linked lists, many implementations of trees, graphs

CPSC 327: Data Structures and Algorithms • Spring 2025 13

common problems
 – recursive rather than iterative (loop) solution
(there’s nothing wrong with using recursion, just that
loops are generally easier to understand)

 – attempting to use the size of the list

 – doubly-linked nodes instead of singly-linked

 – working with elements instead of nodes
(moving elements instead of re-linking nodes,
comparing elements rather than nodes)

 – missing or incorrectly handling special cases
(potential special cases: empty list, one-node list,
todel null, todel last, todel first, todel not
actually in the list)

 – mixing up .equals and ==

 – creating a new node object instead of only a
new node variable

style considerations
 – loop body shouldn’t contain steps only done at
the very beginning or the very end

linked list concepts
 – singly-linked list

 – insert/remove node involves re-linking
rather than shifting or changing elements

CPSC 327: Data Structures and Algorithms • Spring 2025 14

strategy – use examples!
 - draw before and after pictures
 - identify what changes
 - get convenient references for those things
 - update the values

be sure to consider several cases to make
sure your solution works in general

be sure to consider typical special cases
such as the first and last things, empty or
one-element list, null values

CPSC 327: Data Structures and Algorithms • Spring 2025 15

what if this was a doubly-linked list?

CPSC 327: Data Structures and Algorithms • Spring 2025 17

arrays linked structures

access – constant time given the
index (efficient random access)

access – time depends on position
relative to the beginning
(inefficient random access)

space efficiency – no overhead
(links, end-of-record markers)
beyond the data elts themselves
though to efficiently handle resizing, up
to O(n) empty slots are allowed

overhead of at least one pointer
per data value

memory locality – iterating through
involves access to nearby memory
blocks which can be efficiently
loaded into a cache

no memory locality

fixed size – must resize or waste
space
dynamic arrays support resizing (when
doubled in size) in O(1) amortized time
and still O(n) space, but O(n) worst case
insert and ~2x constant factors

no overflow, growing is O(1) when
the insert position is known

insert, remove other than at the end
requires shifting (O(n))

insert, remove at any position
O(1), given a node pointer

Characteristics and Tradeoffs

CPSC 327: Data Structures and Algorithms • Spring 2025 19

Basic Implementation of Containers

Vector / List /
Sequence

classic array vs linked list tradeoffs
● insert/remove not at the end requires shifting in the array (O(n)),

but access by rank (index) is O(r) for linked list
● dynamic array has overhead in time (resizing) and space (empty

slots), linked list has overhead in space (pointers)

Stack O(1) push, pop with array and linked list
● top of stack = end of array, head of linked list

choice of array vs linked list is largely determined by whether there is an
upper bound on the size of the stack that is known in advance (static array)
or not (dynamic array or linked list – time vs space overhead tradeoff)

Queue O(1) enqueue or dequeue, O(n) for other with array, linked list

How to use the data structure to realize the ADT operations?
• decide how container elements will be arranged in the data structure

– use linear order of array or linked list to store the linear order of the container

• options: forward or reverse?
– beginning of array / head of linked list can match beginning / top / front of

container
– end of array / head of linked list can match beginning / top / front of container

CPSC 327: Data Structures and Algorithms • Spring 2025 20

Basic Implementation of Containers

Vector / List /
Sequence

classic array vs linked list tradeoffs
● insert/remove not at the end requires shifting in the array (O(n)),

but access by rank (index) is O(r) for linked list
● dynamic array has overhead in time (resizing) and space (empty

slots), linked list has overhead in space (pointers)

Stack O(1) push, pop with array and linked list
● top of stack = end of array, head of linked list

choice of array vs linked list is largely determined by whether there is an
upper bound on the size of the stack that is known in advance (static array)
or not (dynamic array or linked list – time vs space overhead tradeoff)

Queue O(1) enqueue or dequeue, O(n) for other with array, linked list

Can we do better?

• Vector/List/Sequence – tradeoff is due to the nature of the data
structures (random access vs sequential access)

• Stack – can't beat O(1)
• Queue – …

CPSC 327: Data Structures and Algorithms • Spring 2025 21

Improving an Implementation – Queue

Consider the linked list implementation with the head of the
queue at the beginning of the list.
• enqueue(x) is O(n) – inserting at the end of the list requires finding

the last node
• dequeue() is O(1) – removing from head just involves updating

pointers

enqueue is slow because we have to find the tail of the list.

Can we store a tail pointer instead?
• enqueue – O(1) to locate the node before the insertion point

(current tail), O(1) to create new node and link to current tail, O(1)
to update current tail to new node

• dequeue is not affected (unless the last element is removed – tail
becomes null)

→ O(1) enqueue and dequeue using a linked list with a
tail pointer

CPSC 327: Data Structures and Algorithms • Spring 2025 22

Improving an Implementation – Queue

Consider the array implementation with the head of the
queue at the beginning of the array.
• enqueue(x) is O(1) – insert at the end of the array
• dequeue() is O(n) – removing from head of array requires shifting

Do we have to shift?
• we shift to keep the head of the queue at 0 and the tail

position based on the size

Can we store the head and tail positions instead?
• O(1) to locate head/tail
• O(1) to update head/tail – new value is next position

– “next position” at the end of the array wraps around to 0

→ O(1) enqueue and dequeue using a circular array

CPSC 327: Data Structures and Algorithms • Spring 2025 23

Doing Better

• if the slowness is because of having to find or compute
something, can you store it instead?
– must consider the cost of updating the stored info
–

• if the slowness is the result of not storing something, can
you store it instead?
– must consider the cost of updating the additional info stored

