Binary Tree ADT

Why (proper) binary trees?
binary trees are a very common type of tree

proper simplifies the implementation and is not limiting

in a proper binary tree, every non-leaf node has exactly two
children

can have dummy leaves (no element is stored there)

* BinaryTree ADT / implementation ideas can easily be
extended to general trees

« can implement general trees in terms of binary trees

CPSC 327: Data Structures and Algorithms + Spring 2025 6

BinaryTree ADT

* expandLeaf(node) * removeAboveleaf(node)

follow with setElement(node,elt) to store
an element in the new internal node

Note: this is representative of the concept —

1 particular operations, names, parameters
BinaryTree ADT FR0O

removes the leaf node and its parent "

 standard operations of any class
constructor — create a one-node tree

 standard operations for containers
size(), isEmpty()

« structural accessors

getRoot(), getParent(node), getLeftChild(node),
getRightChild(node), sibling(node)

isRoot(node), isLeaf(node), isInternal(node)

* manipulating elements
setElement(node,elt), swapElements(nodel,node2)

¢ structural mutators
expandLeaf(node), removeAbovelLeaf(node)

CPSC 327: Data Structures and Algorithms + Spring 2025 a7

Working With Trees

// create a tree with 20 at the root
I:> BinaryTree<Integer> tree = new BinaryTree<Integer>(26);
// add 10 and 5 as the children of 20 R *,.

[=) Node<Integer> root = tree.getRoot(); // the nade with 20

tree.expandLeaf(root,10,5);
oot ————»
// add 16 and 8 as the children of 10 .

tree.expandLeaf(left,16,8);

Node<Integer> left = tree.getLeftChild(root); // the node with 10

// add dummy nodes (no elements) as the children of 5 and 16
:> tree.expandLeaf(tree.getRightChild(root));
tree.expandlLeaf(tree.getLeftChild(left));

root ——= .
// add 7 as the left child of 8 (and a dummy node as the right child)
Node<Integer> leftright = tree.getRightChild(left); // the node with 8
tree.expandLeaf(leftright);
tree.setElement(tree.getLeftChild(leftright),7);

lefr -

// add dummy nodes (no elements) as the children of 7
tree.expandLeaf(tree.getLeftChild(leftright));

CPSC 327: Data Structures and Algorithms + Spring 2025 29

Working With Trees

// create a tree with 20 at the root
BinaryTree<Integer> tree = new BinaryTree<Integer=(20);

// add 10 and 5 as the children of 20

Node<Integer> root = tree.getRoot(); // the node with 20
tree.expandLeaf(root,10,5);

Node<Integer> left = tree.getLeftChild(root); // the node with 18

// add 16 and 8 as the children of 10
tree.expandLeaf(left,16,8);

// add dummy nodes (no elements) as the children of 5 and 16

tree.expandLeaf(tree.getRightChild(root));
tree.expandLeaf(tree.getleftChild(left)); /

// add 7 as the left child of 8 (and a dummy node as the right child)
Node<Integer> leftright = tree.getRightChild(left); // the node with "
|:> tree.expandLeaf(leftright);

tree.setElement(tree.getleftChild(leftright),7);

// add dummy nodes (no elements) as the children of 7
|:> tree.expandLeaf(tree.getLeftChild(leftright));

CPSC 327: Data Structures and Algorithms + Spring 2025 50

Working With Trees — Patterns

e
Compute the depth of the specified node. The depth correspends to the
number of ancestors - the root has depth 8 (no ancestors), the children of
the root have depth 1 (each has one ancestor, the root of the tree), the
grandchildren of the root have depth 2 (each has 2 ancestors, the parent
and the parent's parent), and so forth.

@param node

the node
@param tree

the tree
@return the depth of the node 0o O

public static int getDepth (Node<Integer> node, BinaryTree<Integer> tree) {

* moving up the tree
loop with current node being updated to parent until the root is reached

int depth = ©;
// pattern: moving up the tree
for (Node<Integer> current = node ; !tree.isRoot(current) ; current =
tree.getParent(current)) {
depth++;

return depth;

~ ‘

Working With Trees — Patterns

Three main ways of moving through trees:

* moving up the tree

loop with current node being updated to parent until the root is
reached

* moving down the tree, interested in only one child

loop with current node being updated to child until leaf is
reached

* moving down the tree, interested in both children
recursion (left child and right child), with leaf as base case

(note - these are general patterns; modify specifics like
starting or ending point as needed for a particular task)

CPSC 327: Data Structures and Algorithms + Spring 2025 51

Working With Trees — Patterns

* Return the leftmost internal node in the tree.

* @param tree
B the tree (size > 1)
* @return the leftmost internal node

public static Node<Integer> findLeftmost (BinaryTree<Integer> tree) {

* moving down the tree, interested in only one child 0 0
loop with current node being updated to child until leaf is reached

if (tree.getsize() <=1) {
throw new IllegalArgumentException("tree must have more than one node; size "
+ tree.getSize());
}
// pattern: moving down the tree, interested in only one child
Node<Integer> current = tree.getRoot();

for (; !tree.islLeaf(tree.getLeftChild(current)) ; } {
current = tree.getLeftChild(current);

return current;

CPSC 327: Data Structures and Algorithms + Spring 2025 53

Working With Trees — Patterns Working With Trees — Patterns

Jex

/:x * Compute the number of internal nodes in the subtree rooted at the specified

: Compute the number of internal nodes in the tree. * node.

: @param tre: N * @param node @ >
the tree * the node

* @return the number of internal nodes in the tree ‘ * @param tree ‘

i ofol: L e e @ o
public static int gethumInternal (BinaryTree<Integer> tree) { * @return the number of internal nodes in the subtree rooted at node

O O 0 O O 0
© moving down the tree, interested in both children private static int getNunInternal (Node<Integer> node,
recursion (Ieﬁ child and right Ch”d)' with leaf as base case 0ot // pattern: moving down the tree, ?;Ez:gzzriztggircﬁﬁzr;n{ 05

if (tree.isLeaf(node)) {
// base case - where the answer can be computed outright
// (no internal nodes if there's only a leaf)
return ;

} else {
// recursive case - where the answer is computed for the left and right
// subtrees and those answers are used to compute the whole answer
int leftcount = getMumInternal(tree.getLeftChild(node),tree);
int rightcount = getNumInternal(tree.getRightChild(node),tree);

// number of internal nodes = number in left subtree + number in right
// subtree + 1 for the current node, which is an internal node because
// it's not a leaf

return leftcount + rightcount + 1;

CPSC 327: Data Structures and Algorithms + Spring 2025 54

Ja
* Print all of the elements contained in internal nodes in the tree.

Working With Trees — Patterns .

* @param tree

the tree

&

public static void printTree (BinaryTree<Integer> tree) {

. . // pattern: moving down the tree, interested in both children
* Compute the number of internal nodes in the tree. printTree(tree.getRoot(), tree);
* @param tree

* the tree

* @return the number of internal nodes in the tree

I
* Print all of the elements contained in internal nodes in the subtree rooted
* at the specified node.

public static int getNumInternal (BinaryTree<Integer> tree) {
// pattern: moving down the tree, interested in both children

return getNumInternal(tree.getRoot(),tree);

@param node

the node
@param tree

the tree o 0O

® ok oK ok o®

private static void printTree (Node<Integers node,
BinaryTree<Integer> tree) {
// pattern: moving down the tree, interested in both children
if (tree.isLeaf(node)) {
// base case - where the answer can be computed outright
// (nothing to print for a leaf since we are only printing internal nodes)

} else {
// recursive case - where the answer is computed for the left and right
// subtrees and then those answers are used to compute the whole answer

// preorder traversal - current node is handled (its element printed)
// before the child subtrees

System.out.println(node.getElement());
printTree(tree.getLeftChild(node),tree);
printTree(tree.getRightchild(node), tree);

= ‘

CPSC 327: Data Structures and Algorithms « Spring 2025 56 }

Working With Trees — Patterns

/*

"Get the height of the tree. The height of a leaf is ©, the height of a
* leaf's parents is 1, the height of a leaf's grandparents is 2, etc. AN
@param tree ‘
aret tlﬁzehg‘lgﬁt of the tree @ ° o
pu;lic static int getHeight (BinaryTree<Integer> tree) { O O 0
0o O

* moving down the tree, interested in both children
recursion (left child and right child), with leaf as base case

CPSC 327: Data Structures and Algorithms + Spring 2025 58

Implementing BinaryTree — TreeNode

operation linked structure V_‘\
instance variables + element, parent, left child,
right child
getElement() 0O(1) - return element 10
e —
B
CPSC 327: Data Structures and Algorithms « Spring 2025 60

Working With Trees — Patterns

Three main ways of traversing trees:

- preorder — visit node before children */+52z-83 742
¢ inorder — visit node between children 5+2z/8-3*4 "2
* postorder — visit node after children 5z+83-/42"*

All three traversals are special cases
of an Euler tour. @ .

visit, left, visit, right, visit
.

(((5+2)/(8-3))*(472))
print (on first visit,) on third for internal

nodes

CPSC 327: Data Structures and Algorithms + Spring 2025

Implementing BinaryTree R
not shown)
operation linked structure
instance variables * root, size
size() Th(1) - return size 10
iSEmpty() Th(1) - return size == ‘
getParent(node) Th(1) - return value of instance
getLeftChild(node) variable in the node
getRightChild(node) 20 50
expandLeaf(node) Th(1) - create two new nodes, ‘
update links, size += 2
.\ —)
removeAboveLeaf(node) Th(1) - relink grandparent to
sibling, size -= 2
3
setElement(node,elt) Th(1) - change instance var in Q 5, 90
node ‘
swapElements(nodel,node2) Th(1) - essentially 2 setElements
=
N
70

CPSC 327: Data Structures and Algorithms + Spring 2025 61

