

CPSC 327: Data Structures and Algorithms • Spring 2025 33

Improving Map/Dictionary

• unsorted leads to O(1) insert/delete but O(n) search for
both arrays and linked lists

• sorted leads to differences between arrays and linked lists
– O(log n) search and O(n) delete for arrays
– O(n) search and O(1) delete for linked lists

Can we do better?
• O(n) delete in arrays is due to shifting – can’t do much

about that
– circular arrays worked for queues because insert/delete was only

at the ends

• can we exploit the sorted order to improve searching in
linked lists?
– like binary search in arrays, perhaps...

CPSC 327: Data Structures and Algorithms • Spring 2025 34

Improving an Implementation – Map

Binary search exploits the sorted order – but it requires
efficient random access.

Or does it?
• the first iteration of binary search requires knowing the middle

element
• successive iterations require knowing the middle element of one of

the halves

Finding the middle element is achieved in arrays by
arithmetic involving array indexes, but what if we just stored
the necessary info instead?
• store instead of computing…

CPSC 327: Data Structures and Algorithms • Spring 2025 35

Doing Better

161511854 20

• each middle element only needs to
store the location of two other
middle elements → binary tree
structure

• overall the elements are ordered,
so the “other middle elements” are
smaller and larger than the “middle
element”, respectively → binary
search tree

http://cslibrary.stanford.edu/110/BinaryTrees.html CPSC 327: Data Structures and Algorithms • Spring 2025 36

Binary Search Trees

• a binary tree with an ordering property
for the elements
– for every node, all of the elements in the

left subtree are less than or equal to the
node's element and all of the elements in
the right subtree are greater than the
node's element

• operations
– find
– insert
– remove
– visit all elements (traverse) in order

(dummy leaves not shown)

CPSC 327: Data Structures and Algorithms • Spring 2025 37

Binary Search Trees

• find
– start at root
– go to left child or right child depending on

the target value and the current node’s
value

– moving down, one child pattern → loop

– observation: if the element isn't there, search ends at a (dummy)
leaf

(dummy leaves not shown)

CPSC 327: Data Structures and Algorithms • Spring 2025 38

Binary Search Trees

• insert
– can only insert at a leaf
– the correct insertion point is the leaf where an unsuccessful

search for the element ends up

20 65

CPSC 327: Data Structures and Algorithms • Spring 2025 39

Binary Search Trees

• remove
– can only remove above a leaf
– if the element to remove does not have at least one leaf child,

swap it with a safe element which does has at least one leaf
child

• i.e. the next element larger or smaller than the one to remove

CPSC 327: Data Structures and Algorithms • Spring 2025 40

CPSC 327: Data Structures and Algorithms • Spring 2025 41

65

CPSC 327: Data Structures and Algorithms • Spring 2025 42

Binary Search Trees

• visit all elements in order
– moving down, both children pattern → recursion
– need to visit smaller elements before the current node's element

before the larger elements → inorder traversal

(dummy leaves not shown)

CPSC 327: Data Structures and Algorithms • Spring 2025 43

Implementing Map

• can store (key,value) pairs in a binary search tree ordered
by key
– let h be the height of the tree
– all operations are O(h) as it may be necessary to go from the

root all the way down to a leaf

CPSC 327: Data Structures and Algorithms • Spring 2025 44

BST Height

• height of a binary search tree
– best case is O(log n)
– worst case is O(n)

• whether a BST of a given size is balanced
(O(log n) height) or unbalanced (O(n)
height) depends on the order of insertions
and removals, not the elements in the tree

• can we do better?
– try to keep the tree balanced...

