

CPSC 327: Data Structures and Algorithms • Spring 2025 25

Basic Implementation of Dictionary/Map

We need some kind of collection to hold the keys/elements
in the map.

There are two basic collections
• array
• linked list

and two basic ways elements can be ordered within those
collections
• not sorted
• sorted

CPSC 327: Data Structures and Algorithms • Spring 2025 26

Basic Implementation of Map/Dictionary

A is the dictionary, k is a key, x is a key-value pair (k,v)

delete operation as defined in ADM assumes that the element is
already found (known array index, pointer to the linked list node) –
otherwise find operation is required first

* denotes cleverness or subtlety

O(1) * O(1) *

Remove(A,x)
 (not given location of x)

(given location of x)

O(n) O(n) O(n) O(n) O(n) O(n)

requires search + delete

or Delete(A,k)

or Remove(A,k)

CPSC 327: Data Structures and Algorithms • Spring 2025 27

Constant-Time Deletion in an Unsorted Array

• O(1) deletion
– swap element to be deleted with the last element, then remove

the (new) last element

CPSC 327: Data Structures and Algorithms • Spring 2025 28

Constant-Time Deletion in a Singly-Linked List

• O(1) deletion

x.setValue(x.getNext().getValue())
x.setNext(x.getNext().getNext())

CPSC 327: Data Structures and Algorithms • Spring 2025 29

Basic Implementation of PriorityQueue

We need some kind of collection to hold the keys/elements
in the PQ.

There are two basic collections
• array
• linked list

and two basic ways elements can be ordered within those
collections
• not sorted
• sorted

CPSC 327: Data Structures and Algorithms • Spring 2025 30

Basic Implementation of PriorityQueue

operation
array -

unsorted
array - sorted linked list -

unsorted
linked list -

sorted

find min

insert

remove
min

CPSC 327: Data Structures and Algorithms • Spring 2025 31

Basic Implementation of PriorityQueue

operation
array -

unsorted
array - sorted

linked list -
unsorted

linked list -
sorted

find min
O(n) –
search O(1) – in slot 0 O(n) – search

O(1) – at
head

insert
O(1) – add

at end
O(n) – binary
search + shift

O(1) – add at
head

O(n) –
sequential

search

remove
min

O(n) –
search +

delete (swap)
O(n) – shift O(n) – search

+ delete
O(1) – at

head

Can we avoid (some) searching and shifting?
 – store min location (update on insert, remove)
 – circular array or reverse sorted array

CPSC 327: Data Structures and Algorithms • Spring 2025 32

Basic Implementation of PriorityQueue

operation
array -

unsorted
array –

reverse sorted
linked list -
unsorted

linked list -
sorted

find min
O(1) – store
index of min

O(1) – in last
slot

O(1) – store
node with min

O(1) – at
head

insert O(1) – add
at end

O(n) – binary
search + shift

O(1) – add at
head

O(n) –
sequential

search

remove
min

O(n) –
delete (swap)

+ update
min index

O(1) – in last
slot

O(n) –
update min

node

O(1) – at
head

Tradeoff: fast insert or fast remove, but not both.

Can we do better?

