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Implementing Map

• can store (key,value) pairs in a binary search tree ordered 
by key
– let h be the height of the tree
– all operations are O(h) as it may be necessary to go from the 

root all the way down to a leaf

O(1) *      O(1) *

Remove(A,x)
  (not given location of x)

(given location of x)

O(n)              O(n)             O(n)          O(n)       O(h)                

requires search + delete

or Delete(A,k)

or Remove(A,k)

BST

O(h) – root to leaf

O(h) – search + add node

O(h) – may need to find 
successor + swap, remove 
node
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BST Height

• height of a binary search tree
– best case is O(log n)
– worst case is O(n)

• whether a BST of a given size is balanced 
(O(log n) height) or unbalanced (O(n) 
height) depends on the order of insertions 
and removals, not the elements in the tree

• can we do better? 
– try to keep the tree balanced...
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AVL Trees

• invented by Georgy Adelson-Velsky and                                   
Evgenii Landis in 1962

• first known balanced BST data structure

An AVL tree is a BST + a height balance property:
• for every node, the height of the node's left subtree is no 

more than one different from the height of the node's right 
subtree

The height balance property ensures that the height of an 
AVL tree with n nodes is O(log n).
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Height of AVL Trees

Let N(h) be the minimum number of nodes in an AVL tree of 
height h.

– a tree with the minimum number of nodes for its height is also 
the tallest possible for that number of nodes

Then
– N(h) = 1+N(h-1)+N(h-2)

• one child must have height h-1 in                                                          
order for the whole tree to have                                                           
height h, and N(h-1) is the minimum                                                  
number of nodes that subtree can have

• the other child's height can be no more                                                   
than one different, so it can't have                                                        
height less than h-2, and N(h-2) is the                                            
minimum number of nodes that subtree                                                      
can have

• +1 for the root

– N(1) = 1, N(2) = 2
• can't have fewer than one node per level of the tree

http://www.cs.emory.edu/~cheung/Courses/253/
Syllabus/Trees/AVL-height.html
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Height of AVL Trees

• N(h) = 1+N(h-1)+N(h-2) ≤ 1+2N(h-1)

N(h) = O(2h)
 → h = log(N(h))
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Operations on AVL Trees

An AVL tree is a BST, so the find operation is no different.

For insert and remove:

• insert/remove as dictated by the (BST) structural and 
ordering rules

• fix up the broken balance property as needed
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Insert

• structural property dictates that insertion only occurs at a 
leaf

• ordering property dictates where

insert 20

no height-balance violations – we're done!

insert 5

height-balance property violated – uh oh!

20

5

9

9
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Remove

• structural property dictates that removal only occurs 
above a leaf
– may need to swap desired element with next larger/smaller in 

order to satisfy the structural property

remove 3

swap with 4 and remove
no height-balance violations – 
we're done!

remove 9

height-balance property 
violated – uh oh!

9

9

9

4
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Restructuring

Both insertion and deletion may break the height balance 
property.

Restore it by performing one or more restructuring 
operations (or rotations).
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Restructuring

5

9

let z be the first unbalanced node (working up the 
tree from the point of insertion/deletion)

let y be z's tallest child

let x be y's tallest child

5

9

relabel x, y, z as a, b, c according to their correct 
sorted order

label the other subtree children of a, b, c as T1, 
T2, T3, T4 according to their correct sorted order

z

y

x

a

c

b

T1

T2
T3

T4

rearrange as shown:

b

a c

T1     T2     T3    T4
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Restructuring

5

9

a

c

b

T1

T2
T3

T4

rearrange as shown:

b

a c

T1     T2     T3    T4

9

4

3 6

5 71

height balance property restored!
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Restructuring

How many restructuring operations are needed?

Observation.
• restructuring reduces the height                                          

of a subtree

Insertion – 
• insertion increases the height of a subtree, so one 

restructuring is sufficient to shorten it and restore balance

Removal – 
• removal decreases the height of a subtree, so one 

restructuring may result in only pushing the imbalance 
higher up the tree

• O(log n) restructurings may be required
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Insert Examples

– insert/remove as normal for a BST, then fix the balance property if broken

– must check from the inserted/removed node back up to the root to find 
unbalanced nodes – what becomes unbalanced might not be directly above 
the new/removed node

– at most one restructuring needed for insertion, but have to check the whole 
removed node to root path for removal (may need multiple restructurings)

insert 65

insert 20 insert 55
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Delete Examples

– insert/remove as normal for a BST, then fix the balance property if broken

– must check from the inserted/removed node back up to the root to find 
unbalanced nodes – what becomes unbalanced might not be directly above 
the new/removed node

– at most one restructuring needed for insertion, but have to check the whole 
removed node to root path for removal (may need multiple restructurings)

delete 20
delete 20

delete 50

swap with successor

CPSC 327: Data Structures and Algorithms  •  Spring 2025 79

Running Time

• initial BST insert/remove – O(log n)
• number of nodes to check for balance – O(log n)
• time to perform a balance check – O(1) if height info is stored for 

each node
• time to perform one restructuring – O(1)
• number of restructurings performed – 1 for insertion, O(log n) for 

removal
• time to update stored balance information – O(log n) nodes 

affected, O(1) per

O(1) *      O(1) *

Remove(A,x)
  (not given location of x)

(given location of x)

O(n)              O(n)             O(n)          O(n)       O(log n)                

requires search + delete

or Delete(A,k)

or Remove(A,k)

balanced BST

O(log n)

O(log n) 

O(log n) 

Total time: O(log n) for insert/remove
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Implementation

public class AVLTree {

  private TreeNode root_;

  class TreeNode {
    private TreeNode parent_;
    private TreeNode left_, right_;
    private int value_;
  }

}

10

20 50

30

40

9080

70
60

(parent pointers 
not shown)

root_


