Multiwvay Search Trees

A multiway search tree allows more than one value per
node.

* generalization of binary tree

order m allows each node to have up to m-1 values and m
children and m-1 values has up to m-1 values, in sorted order

* a node with k values has k+1 children (which may be
empty)

* ith subtree of a node [v,, ..., v,] only contains values in the
rangev, = v <v,

_ >

O<i=<k _— @ —

Vo= "% Vi = ® VAN /‘ )\
TITEE T Y

CPSC 327: Data Structures and Algorithms + Spring 2025 86

Height of 2-4 Trees

Does this ensure logarithmic height?
- Yes!

Observe.
 the 2-4 tree with the fewest keys for its height has 1 key
per node (complete binary tree)
level i has 2' keys and the whole tree has n = 2"-1 keys
- h=0(log n)
 the 2-4 tree with the most keys for its height has 3 keys
per node
level i has 3% 4' keys and the whole tree has n = 4"-1 keys
- h=0(log n)

CPSC 327: Data Structures and Algorithms + Spring 2025 88

2-4 Trees

A 2-4 tree is a multiway search tree where
« all leaves are at the same depth
» each node has 1, 2, or 3 keys and (# keys)+1 children

CPSC 327: Data Structures and Algorithms + Spring 2025 87

Operations on 2-4 Trees

Searching in a multiway tree is similar to searching in a
binary tree —

if the target element is not one of the keys in the current
node, continue the search with the appropriate child.

CPSC 327: Data Structures and Algorithms + Spring 2025 89



Operations on 2-4 Trees

For insert and remove, we use the same approach as with
AVL trees:

« insert/remove as dictated by the structural and ordering
rules
new elements are always inserted at a leaf

elements can only be removed from a leaf — first swap with next
larger (or smaller) as needed

« fix up the broken node size property as needed

if insertion creates an overflow (too many keys) —
« split the node and promote a middle item to the proper place in the parent
* repeat until there are no more overflows, creating a new root if necessary

if removal creates an underflow (not enough keys) —
« if there's a sibling with at least two keys, transfer one (via the parent)
. o_tglerwis& merge — move a key from the parent, merging the node with a

sibling

« repeat until there are no more underflows, removing the root if necessary =

0

insert 55

Insert

insert 12

CPSC 327: Data Structures and Algorithms + Spring 2025

remove 30

swap



remove 25

transfer

remove 30

merge with 75,
pulling 70 down
from the parent

another
underflow!

resolve via
transfer

remove 25

merge empty
node with 50,
pulling down 30
from the parent

Insert 50 into the following 2-4 tree.

ofolc

Remove 80 from the following 2-4 tree. If swaps are needed, swap|

Insert 50 into the following 2-4 tree.

40 60 70

Insert 80 into the following 2-4 tree. If an ov|

204090

CPSC 327: Data Structures and Algorithms + Spring 2025




2-4 Trees Running Time

time for initial insert — O(log n)
time to fix up one overflow — O(1)
number of overflows to fix — O(log n)

- total time for insert — O(log n)
time for initial remove — O(log n)

time to fix up one underflow — O(1)
number of underflows to fix — O(log n)

- total time for remove — O(log n)

CPSC 327: Data Structures and Algorithms + Spring 2025 %8

Red-Black Trees

A red-black tree is a BST + coloring
rules:

the root and the (null) leaves are black 7
every red node has two black child nodes

every path from a node to any of its descendant leaves
contains the same number of black nodes

Properties.
O(log n) height
longest root-to-leaf path (alternating red and black nodes) is no
more than twice as long as the shortest (all black nodes)

O(log n) insert/remove
O(log n) to perform insert/remove

O(log n) color changes and at most three restructurings to
restore properties

CPSC 327: Data Structures and Algorithms + Spring 2025 100

Balanced Search Trees

2-4 trees achieve O(log n) height by fixing the maximum
depth of any element. This is made possible by allowing
flexibility in the number of elements per node.

Red-black trees have the same idea — logarithmic max
depth — but achieve it through flexibility in height rather than
in the number of elements per node.
structurally equivalent to 2-4 trees
can create an instance of the other with elements in the same order
can map operations on one into operations on the other

CPSC 327: Data Structures and Algorithms + Spring 2025 9%

Splay Trees

invented by Daniel Sleator and Robert
Tarjan in 1985

A splay tree is a BST + a restructuring operation:

after each find/insert/remove, that node (or its parent) is
brought to the root through splaying

Observation.
frequently-accessed nodes are near the root

Does this ensure O(log n) height?
on average, yes
worst case is O(n) — but the worst case is unlikely

CPSC 327: Data Structures and Algorithms + Spring 2025 101



Splaying

* X is the node being splayed
* pis the parent of x
* g is the parent of p (i.e. the grandparent of x)

Case 1: zig — applies when p is the root
X is rotated to the root

A B (the right-handed case is similar) B c
http://en.wikipedia.org/wiki/Splay tree

CPSC 327: Data Structures and Algorithms + Spring 2025 102

Splaying

« X is the node being splayed
* pis the parent of x
* g is the parent of p (i.e. the grandparent of x)

Case 3: zig-zag — applies when p is not the root, and one of
x and p is a right child and the other is a left child
X is rotated into p's position, then x is rotated into g's position

how oG
A A A A

(the right-handed case is similar)

http://en.wikipedia.org/wiki/Splay tree

CPSC 327: Data Structures and Algorithms + Spring 2025 104

Splaying

* X is the node being splayed
* pis the parent of x
« g is the parent of p (i.e. the grandparent of x)

Case 2: zig-zig — applies when p is not the root, and x and p
are both either right children or left children
p is rotated into g's position, then x is rotated into p's position

(the right—hanfded
case is similar)

http://en.wikipedia.org/wiki/Splay_tree

CPSC 327: Data Structures and Algorithms + Spring 2025 103

Performance

- all operations are O(height) to perform the operation +
O(height) splay steps
each zig-zig or zig-zag raises x two levels, each zig (done at
most one per splay) raises x one level

- O(log n) amortized

* worst-case performance

splay trees perform as well as optimum static balanced BSTs on
sequences of at least n accesses (up to a constant factor)

« “static” = no restructuring of tree after construction

« “optimal” = tree providing smallest possible time for a series of accesses
it is conjectured that splay trees perform as well as optimum
dynamic balanced BSTs on sequences of at least n accesses (up
to a constant factor)

« “dynamic” = tree can be restructured after construction (e.g. AVL trees,
red-black trees)

CPSC 327: Data Structures and Algorithms + Spring 2025 105



Splay Trees Takeaways

another form of restructuring operation

randomized or heuristic approaches can result in good
performance in practice because worst case scenarios
are rare

amortized analysis
based on performance over a series of operations

CPSC 327: Data Structures and Algorithms + Spring 2025 106

Comparison

frequently-accessed elements are near the root in splay
trees, resulting in faster access

advantageous in applications where there is locality of reference
— repeated access of related storage locations

AVL trees are more tightly balanced than red-black trees,
so faster retrieval but slower insertion and removal
“tightly balanced” — smaller height

AVL trees are good for applications where trees are built once
but searched often

CPSC 327: Data Structures and Algorithms + Spring 2025 108

Comparison

AVL trees and splay trees achieve O(log n) height by
keeping the subtrees from getting too uneven.

2-4 trees and red-black trees achieve O(log n) height by
constraining the maximum depth of any element.

AVL trees, 2-4 trees, and red-black trees all have worst-

case O(log n) operations

splay trees have amortized O(log n) operations, with
worst-case O(n) behavior

CPSC 327: Data Structures and Algorithms + Spring 2025

Comparison

splay trees have the simplest implementation

just BST + restructuring operation — no additional information to
store/maintain

red-black trees are more commonly used than 2-4 trees
easily built on top of binary trees — just need to store a color bit
simpler to implement than 2-4 trees

'find' may restructure a splay tree

from a design perspective, having read-only operations change
structure is undesirable

a consequence is that splay trees are not thread-safe for
concurrent finds without extra bookkeeping

CPSC 327: Data Structures and Algorithms + Spring 2025



Designing Data Structures

Studying balanced search trees reveals two tactics:

it can be effective to add additional properties to the
organization of the elements stored in order to improve
runtime of an operation

e.g. AVL trees, 2-4 trees, red-black trees

it can be effective (though harder to analyze) to piggyback
local optimizations on other operations
e.g. splay trees

In both cases, it is essential that the additional work does
not overwhelm the savings gained.

CPSC 327: Data Structures and Algorithms + Spring 2025 110



