

PriorityQueue	maintain removal order when there are out-of-order additions	 insert(x,p) – insert elt x with priority p findMin() or findMax() – find elt with min/m. priority deleteMin() or deleteMax() – remove (and return) elt with min/max key note: a PQ is typically either a min-PQ or a n PQ – it does not support both min and max operations simultaneously.
---------------	---	--

operation	array - unsorted	array – reverse sorted	linked list - unsorted	linked list sorted
find min	O(1) – store index of min	O(1) – in last slot	O(1) – store node with min	O(1) – at head
insert	O(1) – add at end	O(n) – binary search + shift	O(1) – add at head	O(n) – sequential search
remove min	O(n) – delete (swap) + update min index	O(1) – in last slot	O(n) – update min node	O(1) – at head
Tradeo Can w	off: fast inser e do better?	t or fast remove	e, but not botl	h.

operation	unsorted	sorted	tree
find min	O(1) – store index of min	O(1) – in last slot	
insert	O(1) – add at end	O(n) – binary search + shift	
remove min	O(n) – shift + update min index	O(1) – in last slot	

Priority Queue Implementation			
Can we do better?	operation	balanced search tree	
 Observation. O(log n) for insert, remove min is due to updating the tree structure 	find min	O(1) – store min node	
	insert	O(log n) – update tree structure	
	remove min	O(log n) – update tree structure + update min node	
CPSC 327: Data Structures and Algorithms • Spring 2025			

operation	array –	array – reverse	balanced search
	unsorted	sorted	tree
find min	O(1) – store index of min	O(1) – in last slot	O(1) – store min node
insert	O(1) – add at	O(n) – binary	O(log n) – update
	end	search + shift	tree structure
remove min	O(n) – shift + update min index	O(1) – in last slot	O(log n) – update tree structure + update min node
Tradeoff:	worst-case time	e reduced from C	D(n) to O(log n),
but have	lost O(1) insert	or remove.	

118

CPSC 327: Data Structures and Algorithms • Spring 2025

Priority Queue Implementation

How to implement?

CPSC 327: Data Structures and Algorithms . Spring 2025

Observations.

 balanced search tree = binary (or multiway) tree + ordering constraint to aid in search + structural constraint to aid in efficiency

Can we do something along these lines for PQs?

• but with a weaker ordering constraint since search only needs to find the min

Heaps

The idea: a heap is a

- binary tree +
- an ordering property to aid in searching +
- a structural property to aid in efficiency of implementation

Heap ordering property: (min heap)

- every node's key is ≤ the keys of its children
 - smallest element is at the root

Structural constraint:

CPSC 327: Data Structures and Algorithms . Spring 2025

CPSC 327: Data Structures and Algorithms . Spring 2025

- the tree is a complete binary tree
 - the only empty spots are the rightmost elements in the last level

Note: the height of a complete binary tree is O(log n).

Heaps – Insertion The structural property means insertion can only occur in one place. Strategy: insert in the only possible place, then fix up the ordering property if broken. Thus: • insert element in the first available slot • "bubble up" until ordering property is restored – element is only out of order with respect to parent

Strategy –

- insert/remove as dictated by the structural property
- fix up the ordering property if broken by bubbling element down or up

Heaps – Implementation The standard implementation for binary trees is a linked structure. 10 pointer to root node tree node stores element + pointers to parent, left child, right child Running time and space - find min is O(1) – min element is at the root inserting and removing require knowing the location of the last element in the tree O(n) to find - don't know which child will have the last leaf solution – maintain a last pointer! updating last after insertion/removal can require O(log n) time bubbling is already O(log n) so this is just a constant factor space is O(n)

- but there is overhead of three pointers per element (same as BST)

Heaps – Implementation

Assessment -

- same big-Oh running time as balanced search tree
- space is similar
 - need parent pointers, though many balanced search tree implementations have overhead beyond the binary tree structure
- implementation is simpler

Can we do better?

CPSC 327: Data Structures and Algorithms . Spring 202

- reduce space overhead
 - array eliminates overhead of pointers...if structural information can be encoded in the indices
- reduce time to build heap from n elements
 - O(n log n) for n insert operations

Heaps – Implementation

The alternative to a linked structure is an array.

- calculate parent/child index instead of storing
 - root stored at slot 0
 - left child of node with index i is in slot 2i+1, right child in slot 2i+2
 - parent of node with index j is in slot (j-1)/2

Running time and space -

- find min is O(1) min element is in slot 0
- inserting and removing require knowing the location of the last element in the tree
 - at size-1 (i.e. maintain a last index)
 - updating this value after insertion/removal takes only O(1) time
 just increment or decrement

12

- space is O(n)
 - only have to store elements (no additional pointers)
 - complete binary tree fills consecutive slots no gaps

Heaps – Implementation

Arrays are the traditional implementation for heaps.

 same big-Oh as linked structure, but avoids space overhead of parent/child pointers

Running time:

- insert O(log n)
 - O(1) to put element in array, update last
 - O(log n) to bubble up
- remove min O(log n)
 - O(1) to swap with last, remove last, update last
 - O(log n) to bubble down
- find min O(1)
 - min element is at root (index 0)

CPSC 327: Data Structures and Algorithms • Spring 2025

Heaps – Implementation

We didn't improve the big-Oh over the balanced search tree implementation for PQs.

But –

- reduced storage overhead (no parent, child pointers)
- reduced difficulty of implementation
 - array + bubble up, bubble down vs. linked structure + balanced search tree operations
 - traded maintaining 'min' reference for incrementing/decrementing 'last' index
- reduced constant factors
 - traded O(log n) maintenance of 'min' reference for O(1) maintenance of 'last' index

Building a Heap

CPSC 327: Data Structures and Algorithms . Spring 2025

Or...if you already have an array of elements...

• for any n elements in an array, the heap order property is at most broken only for the first n/2 elements

Heapify idea.

• for each index n/2 down to 0, bubble down that element

Running time.

- bubble down takes O(h) time
 - n/2 elements are leaves (already in place no change)
 - n/4 elements are one level above leaf (at most 1 swap)
 - n/8 elements are two levels above leaf (at most 2 swaps)

- ..

• = $\sum_{i=1}^{\log n} (i-1)(\frac{n}{2^i})$ = n $\Theta(1) = \Theta(n)$

CPSC 327: Data Structures and Algorithms • Spring 2025

