

CPSC 327: Data Structures and Algorithms • Spring 2025 113

Data Structures Toolbox – The Story So Far

Fundamental data structures and algorithms –

• collections – List, Stack, Queue
– implementations: array (circular array), linked list (tail pointer)
– can achieve O(1) operations for Stack, Queue

• searching and lookup
– sequential search, binary search
– Map/Dictionary

• implementations: array, linked list (sorted, unsorted); balanced search
tree (AVL, 2-4, …)

• can achieve O(log n) operations using balanced search trees

– Set
• can implement as Map/Dictionary where element is both key and value

–

• sorting
– insertion sort, selection sort, mergesort, quicksort, ...
– PriorityQueue

• implementations: array, linked list (sorted, unsorted)
• can have O(1) insert/remove but the other operation is O(n)

can we do
better than
O(log n)?

can we do
better than
this? CPSC 327: Data Structures and Algorithms • Spring 2025 114

ADTs – PriorityQueue

PriorityQueue maintain removal
order when there
are out-of-order
additions

● insert(x,p) – insert elt x with priority p
● findMin() or findMax() – find elt with min/max

priority
● deleteMin() or deleteMax() – remove (and

return) elt with min/max key

note: a PQ is typically either a min-PQ or a max-
PQ – it does not support both min and max
operations simultaneously

CPSC 327: Data Structures and Algorithms • Spring 2025 115

Basic Implementation of PriorityQueue

operation
array -

unsorted
array –

reverse sorted
linked list -
unsorted

linked list -
sorted

find min O(1) – store
index of min

O(1) – in last
slot

O(1) – store
node with min

O(1) – at
head

insert O(1) – add
at end

O(n) – binary
search + shift

O(1) – add at
head

O(n) –
sequential

search

remove
min

O(n) –
delete (swap)

+ update
min index

O(1) – in last
slot

O(n) –
update min

node

O(1) – at
head

Tradeoff: fast insert or fast remove, but not both.

Can we do better?

CPSC 327: Data Structures and Algorithms • Spring 2025 116

Priority Queue Implementation

Can we do better?

Observations.
• either insert or remove takes O(n) time

– would be nice to reduce this!

• there is an ordering of the elements (by priority)
– sorted order is exploited in remove min but isn't helpful for insert

(binary search in array is offset by having to shift to make room)

Recall: balanced search trees
• insert/remove is O(log n)

CPSC 327: Data Structures and Algorithms • Spring 2025 117

Priority Queue Implementation

operation
array –

unsorted
array – reverse

sorted
balanced search

tree

find min
O(1) – store
index of min

O(1) – in last slot

insert
O(1) – add at

end
O(n) – binary
search + shift

remove
min

O(n) – shift +
update min index

O(1) – in last slot

CPSC 327: Data Structures and Algorithms • Spring 2025 118

Priority Queue Implementation

operation
array –

unsorted
array – reverse

sorted
balanced search

tree

find min
O(1) – store
index of min O(1) – in last slot

O(1) – store min
node

insert
O(1) – add at

end
O(n) – binary
search + shift

O(log n) – update
tree structure

remove
min

O(n) – shift +
update min index

O(1) – in last slot
O(log n) – update

tree structure +
update min node

Tradeoff: worst-case time reduced from O(n) to O(log n),
but have lost O(1) insert or remove.

CPSC 327: Data Structures and Algorithms • Spring 2025 119

Priority Queue Implementation

operation
balanced search

tree

find min
O(1) – store min

node

insert
O(log n) – update

tree structure

remove
min

O(log n) – update
tree structure +

update min node

Can we do better?

Observation.
• O(log n) for insert, remove

min is due to updating the
tree structure

CPSC 327: Data Structures and Algorithms • Spring 2025 120

Priority Queue Implementation

Can we do better?

Consider the essence of the problem –
• don't necessarily need a full sorted order at any one point,

just the ability to get the min
• adding an element is only a small incremental change
• only a specific element is removed (the min)

Strategy –
• maintain a partial order of elements

– stronger than unsorted (to improve on updating min) but not as
strong as sorted (to improve on insert performance)

–

CPSC 327: Data Structures and Algorithms • Spring 2025 121

Priority Queue Implementation

How to implement?

Observations.
• balanced search tree = binary (or multiway) tree +

 ordering constraint to aid in search +
 structural constraint to aid in efficiency

Can we do something along these lines for PQs?
• but with a weaker ordering constraint since search only

needs to find the min

CPSC 327: Data Structures and Algorithms • Spring 2025 122

Heaps

The idea: a heap is a
• binary tree +
• an ordering property to aid in searching +
• a structural property to aid in efficiency of implementation

Heap ordering property: (min heap)
• every node's key is ≤ the keys of its children

– smallest element is at the root

Structural constraint:
• the tree is a complete binary tree

– the only empty spots are the rightmost elements in the last level

Note: the height of a complete binary tree is O(log n).

CPSC 327: Data Structures and Algorithms • Spring 2025 123

Heaps – FindMin

The ordering property means that
the min element is at the root.

10

15 20

2530 35 80

50 45

CPSC 327: Data Structures and Algorithms • Spring 2025 124

Heaps – Insertion

The structural property means
insertion can only occur in one place.

Strategy: insert in the only
possible place, then fix up the
ordering property if broken.

Thus:
• insert element in the first available slot
• “bubble up” until ordering property is restored

– element is only out of order with respect to parent

10

15 20

2530 35 80

50 45 5

CPSC 327: Data Structures and Algorithms • Spring 2025 125

Heaps – Insertion

10

15 20

2530 35 80

50 45 5

10

15 20

530 35 80

50 45 25

10

5 20

1530 35 80

50 45 25

5

10 20

1530 35 80

50 45 25

CPSC 327: Data Structures and Algorithms • Spring 2025 126

Heaps – RemoveMin

The structural property means
removal can only occur from one
place.

Strategy: swap element to delete
with the element in the only possible
position for removal, then fix up the
ordering property if broken.

Thus:
• swap root with last slot
• remove element in last slot
• “bubble down” until ordering property is restored

– swap with smaller child

10

15 20

2530 35 80

50 45

CPSC 327: Data Structures and Algorithms • Spring 2025 127

Heaps – RemoveMin

10

15 20

2530 35 80

50 45

45

15 20

2530 35 80

50

15

45 20

2530 35 80

50

15

25 20

4530 35 80

50

CPSC 327: Data Structures and Algorithms • Spring 2025 128

Strategy –
• insert/remove as dictated by the structural property
• fix up the ordering property if broken by bubbling element

down or up

CPSC 327: Data Structures and Algorithms • Spring 2025 130

Heaps – Implementation

The standard implementation for binary trees is a
linked structure.

– pointer to root node
– tree node stores element + pointers to parent, left child,

right child

Running time and space –
• find min is O(1) – min element is at the root
• inserting and removing require knowing the location of the

last element in the tree
– O(n) to find – don't know which child will have the last leaf
– solution – maintain a last pointer!
– updating last after insertion/removal can require O(log n) time

• bubbling is already O(log n) so this is just a constant factor

• space is O(n)
– but there is overhead of three pointers per element (same as BST)

10

CPSC 327: Data Structures and Algorithms • Spring 2025 131

Heaps – Implementation

Assessment –
• same big-Oh running time as balanced search tree
• space is similar

– need parent pointers, though many balanced search tree
implementations have overhead beyond the binary tree structure

• implementation is simpler

Can we do better?
• reduce space overhead

– array eliminates overhead of pointers...if structural information
can be encoded in the indices

• reduce time to build heap from n elements
– O(n log n) for n insert operations

CPSC 327: Data Structures and Algorithms • Spring 2025 132

Heaps – Implementation

The alternative to a linked structure is an array.
• calculate parent/child index instead of storing

– root stored at slot 0
– left child of node with index i is in slot 2i+1, right child in slot 2i+2
– parent of node with index j is in slot (j-1)/2

Running time and space –
• find min is O(1) – min element is in slot 0
• inserting and removing require knowing the location of the

last element in the tree
– at size-1 (i.e. maintain a last index)
– updating this value after insertion/removal takes only O(1) time

• just increment or decrement

• space is O(n)
– only have to store elements (no additional pointers)
– complete binary tree fills consecutive slots – no gaps

CPSC 327: Data Structures and Algorithms • Spring 2025 133

Heaps – Implementation

Arrays are the traditional implementation for heaps.
– same big-Oh as linked structure, but avoids space overhead of

parent/child pointers

Running time:

• insert – O(log n)
– O(1) to put element in array, update last
– O(log n) to bubble up

• remove min – O(log n)
– O(1) to swap with last, remove last, update last
– O(log n) to bubble down

• find min – O(1)
– min element is at root (index 0)

CPSC 327: Data Structures and Algorithms • Spring 2025 134

Heaps – Implementation

We didn't improve the big-Oh over the balanced search tree
implementation for PQs.

But –

• reduced storage overhead (no parent, child pointers)

• reduced difficulty of implementation
– array + bubble up, bubble down vs. linked structure + balanced

search tree operations
– traded maintaining 'min' reference for

incrementing/decrementing 'last' index

• reduced constant factors
– traded O(log n) maintenance of 'min' reference for O(1)

maintenance of 'last' index

CPSC 327: Data Structures and Algorithms • Spring 2025 135

Building a Heap

How to build a heap?

• repeatedly insert each element = Θ(n log n) ∑
i=0

n−1

log(i)

CPSC 327: Data Structures and Algorithms • Spring 2025 136

Building a Heap

Or...if you already have an array of elements...
• for any n elements in an array, the heap order property is

at most broken only for the first n/2 elements

Heapify idea.
• for each index n/2 down to 0, bubble down that element

Running time.
• bubble down takes O(h) time

– n/2 elements are leaves (already in place – no change)
– n/4 elements are one level above leaf (at most 1 swap)
– n/8 elements are two levels above leaf (at most 2 swaps)
– …

• = = n Θ(1) = Θ(n)∑
i=1

log n

(i−1)(
n
2i

)

