Open Addressing

Deletion requires special handling.

+ can re-insert all elements following the deleted element

if the load factor is low enough, this should only be a small
number of elements

limited to sequential probing

delete 24 ‘ 0 1 2 3 4 5 6

delete 10 ‘ 35 11 - 10 18 24 5

delete 35

delete 18
CPSC 327: Data Structures and Algorithms « Spring 2025 155
Hashtables

If done properly, hashtables provide O(1) expected time for
find, insert, remove — once h(k) has been computed.

“done properly” means load factor isn't too high and is kept
bounded, and there is good distribution of hash values

Computing h(k) can take time.

e.g. for strings, computing h(k) = O(|k|) ... which reduces to O(1)
if |k| is bounded, but must be considered as O(|k|) otherwise

Worst-case behavior is O(n) for find and remove, unless
separate chaining + a fancier bucket implementation is used
(which has memory overhead).

worst case occurs when key distribution is poor and load factor
is high

CPSC 327: Data Structures and Algorithms + Spring 2025 157

Open Addressing

Deletion requires special handling.

» can mark empty slot as “deleted” — find continues on,
insert can fill

drawback: probe sequence lengths are based on the largest the
collection has been, not the current size

solution: can periodically re-hash everything to clean up

delete 24
delete 10 ‘ 0 1 D 3 2 s .
delete 35 ‘ 3% 11 - 10 18 24 5 H
delete 18
CPSC 327: Data Srucures and Algoritims + Spring 2025 -
Hashtables

What about other operations?

* initialization
O(N) — size of the array used for the hashtable

 traversal

in most cases O(n+N) for separate chaining — must examine
each index of table as well as all elements
« can be worse e.g. worst case dynamic perfect hashing

O(N) for open addressing
+ find next larger/smaller key, find min/max key

full traversal is required because h(k) does not preserve original
ordering of keys

CPSC 327: Data Structures and Algorithms + Spring 2025 158

