

CPSC 327: Data Structures and Algorithms • Spring 2025 170

Sorting for Algorithm Design

option applications

sorting
algorithm

● when all elements to sort are known at one time
● many tasks can reduce to sorting, or can be done more

efficiently if the elements are sorted – “when in doubt, sort”
● e.g. searching, closest pair, element uniqueness, finding the

mode, selection
● e.g. greedy algorithms such as event scheduling and

Kruskal’s algorithm

PriorityQueue ● for sorting in a dynamic environment, where the elements are
not all known at once
● e.g. greedy algorithms such as Dijkstra's algorithm and

Prim’s algorithm

Pragmatics –
• can handle increasing vs decreasing order, keys vs records, and

non-numerical data by abstracting a comparator from the sorting
algorithm

CPSC 327: Data Structures and Algorithms • Spring 2025 171

Sorting

Key algorithms –

• selection sort – O(n2)
– heapsort – O(n log n)

• insertion sort – O(n2)
– shellsort can be as good as O(n log2 n) with the right gap

sequence

• quicksort, merge sort – O(n log n)

• bucket sort – average O(n) when b ≈ n, O(n+n2/b+b) otherwise
 worst O(n2) [or O(n log n) depending on algorithm used for buckets]

– b is the number of buckets
• radix sort – O(nd)

– d is the number of “digits”

• external sorting
– when not all of the data fits

in memory at once

https://en.wikipedia.org/wiki/Shellsort

ADM 4.7
https://en.wikipedia.org/wiki/Bucket_sort
https://en.wikipedia.org/wiki/Radix_sort

https://en.wikipedia.org/wiki/External_sorting

co
m

pa
ri

so
n-

ba
se

d
di

st
rib

ut
io

n

CPSC 327: Data Structures and Algorithms • Spring 2025 172

Sorting – Key Algorithms

selection sort repeatedly pick the smallest remaining element in the unsorted portion of
the array and swap it with the current position

heapsort use a priority queue to repeatedly pick the smallest remaining element

heapsort is a variation of selection
sort that selects from a heap
instead of an unsorted array

in-place sort – s[0..i-1] is the sorted part of the array, s[i..n] is unsorted
final swap takes advantage of s[i..n] unsorted to remove an element without shifting

can be implemented in-place – use a max heap instead
s[0..n-i-1] is the heap, s[n-i..n] sorted
extract max swaps the root with the last element in the
array, which is exactly where it should go

adapt for different sort orders by translating
“less than” to “comparator says comes first”

CPSC 327: Data Structures and Algorithms • Spring 2025 173

Sorting – Key Algorithms

insertion sort repeatedly insert the next element into the correct position in the sorted
part of the array

shellsort repeatedly sort elements at different gap intervals, reducing the gap size
over iterations

shellsort is a variation of insertion sort that
sorts all elements gap apart in each pass

insertion sort

the performance depends on the gap sequence, and can
be complicated to analyze
not as efficient as quicksort, but is significantly better than
O(n2) and avoids recursion

adapt for different sort orders by translating
“less than” to “comparator says comes first”

CPSC 327: Data Structures and Algorithms • Spring 2025 174

Sorting – Key Algorithms

quicksort use a pivot element to partition the array, then recursively sort the two
subarrays

https://medium.com/@dinmukhamed.dukumbayev26/quicksort-is-c-
a8cc34a6ccc0

leads to worst-case O(n2) performance for
sorted, reverse sorted

instead pick random element as pivot for
O(n log n) expected performance (low
probability of worst case)

avoid worst case from sorted and nearly
sorted arrays by shuffling first – shuffling is
O(n)

adapt for different sort orders by translating
“less than” to “comparator says comes first”

CPSC 327: Data Structures and Algorithms • Spring 2025 175https://en.wikipedia.org/wiki/Merge_sort#/media/File:Merge_sort_algorithm_diagram.svg

Sorting – Key Algorithms

merge sort divide the array in half, recursively sort the two halves, and then combine
them into a single sorted array

O(n log n) best/worst

multiway mergesort is
suitable for external
sorting – sort chunks of
the data, then use 2- or k-
way merging in a series
of passes

adapt for different sort orders by translating
“less than” to “comparator says comes first”

CPSC 327: Data Structures and Algorithms • Spring 2025 176

buckets are based on a range of values for
numbers, prefixes for strings

insertion sort can be used to sort buckets as each
element is added, or another sorting algorithm to
sort bucket contents after distribution step

Sorting – Key Algorithms

bucket sort partition the elements into bins, then sort each bin

radix sort process elements character-by-character or digit-by-digit, typically from
right to left, sorting according to the current character/digit in each pass

https://codeiiest-dev.github.io/Algorithms/SortingAlgorithms/BucketSort.html
https://lifeindatastructures.wordpress.com/2017/10/19/radix-sort/

each pass of radix sort sorts by distributing into
buckets based on current digit/character

LSD processes entire collection in each pass –
distribution must preserve order within buckets (stable)

MSD most suitable for strings or fixed-length integers
CPSC 327: Data Structures and Algorithms • Spring 2025 177

Sorting – Key Algorithms

external sorting any technique used for sorting data sets that are too big to fit into memory

• multiway mergesort
– sort chunks that are small enough to fit into memory
– iterative 2-way merge

• repeatedly merge pairs of chunks

– direct k-way merge
• merge k chunks at once, maintaining a heap or tournament tree of the next

element in each chunk to have an efficient way to find the next smallest element

https://www.baeldung.com/cs/2-way-vs-k-way-merge

CPSC 327: Data Structures and Algorithms • Spring 2025 178

Sorting

• best general-purpose sorting algorithm is quicksort
– use a library implementation because there are many details to

achieve maximum performance

• heapsort is a good choice if you have to implement a
sorting algorithm
– O(n log n)
– easy to implement, especially

with a priority queue available
– can be implemented in-place

“Although other algorithms prove slightly faster
in practice, you won’t go wrong using heapsort
for sorting data that sits in the computer’s main
memory.” [Skiena p. 121]

CPSC 327: Data Structures and Algorithms • Spring 2025 179

Sorting

Choosing a sorting algorithm –

• how many keys are being sorted?
– for small n (≤100), O(n2) is fine and simple implementations are

preferred
– for medium and large n, O(n log n) is needed
– for very large n (≥100,000,000), need external sorting

• are there duplicate keys?
– a stable sorting algorithm keeps equal keys in the original order

• many algorithms are not inherently stable, but can be made so by including the
initial position as a secondary key

– having many equal keys amongst the elements being sorted can lead
to performance problems for some algorithms if not explicitly designed
for it

• does the data have special properties?
– is it already partially sorted?
– are the keys uniformly distributed across the range of values?
– are the keys long?
– is the range of keys very small?

ADM 17.1

CPSC 327: Data Structures and Algorithms • Spring 2025 180

Sorting in Java – Arrays

• plus similar versions for arrays of the other primitive types

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html

CPSC 327: Data Structures and Algorithms • Spring 2025 181

Sorting in Java – Arrays

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html

• natural ordering means the elements must implement the
Comparable interface

CPSC 327: Data Structures and Algorithms • Spring 2025 182

Sorting in Java – Arrays

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html

CPSC 327: Data Structures and Algorithms • Spring 2025 183

Sorting in Java – Collections

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collections.html

• natural ordering means the elements must implement the
Comparable interface

CPSC 327: Data Structures and Algorithms • Spring 2025 184

Sorting in Java – List
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html

CPSC 327: Data Structures and Algorithms • Spring 2025 185

Comparing in Java

• when there is a natural ordering, the type itself
implements Comparable

• when there is not a natural ordering, define a standalone
comparator
– separate class implementing Comparator

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Comparable.html

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Comparator.html

CPSC 327: Data Structures and Algorithms • Spring 2025 186

Comparable

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Comparable.html

CPSC 327: Data Structures and Algorithms • Spring 2025 187

Comparator

• when there is not a natural ordering, define a standalone
comparator
– implements Comparator

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Comparator.html

