

CPSC 327: Data Structures and Algorithms • Spring 2025 190

Searching – Key Points

• searching vs lookup
– more efficient algorithms are possible when the collection of

elements is fixed (no insertions or deletions)

• sequential search
– can be applied to any traversable collection

• binary search
– requires a sorted array
– deceptively tricky to implement correctly – thorough testing

requires searching for every key as well as every option for
between keys

CPSC 327: Data Structures and Algorithms • Spring 2025 191

Searching – Key Points

• how many elements?
– sequential search is fastest for small collections (≤ 20), even if they

are already sorted
– beyond 100 elements (and especially if multiple searches), better to

sort first and use binary search
– for huge data sets (too big for memory), use B-trees or another data

structure

• are some elements accessed more often than others?
– take advantage – order list accordingly or build optimal binary search

tree

• do access frequencies change over time?
– self-organizing structures – move-to-front heuristic (lists), splay trees

• unbounded range, or element thought to be nearby?
– one-sided binary search – repeatedly double the search interval size,

extending one side of the interval, until the upper bound is found (then
regular binary search)

CPSC 327: Data Structures and Algorithms • Spring 2025 192

optimal BST is optimized to provide
fastest possible access for given
patterns of access

expensive to compute, so want to
use it for many searches

B-trees are a balanced search tree designed for external memory applications

without locality of reference, assumption of all memory accesses being equal
time breaks down when external memory is required

binary search isn’t limited to collections – it can be applied
to continuous domains, such as numbers – but requires a
defined search interval

sequential search is efficient if the target is close by; one-
sided binary search mitigates the high cost if it isn’t

CPSC 327: Data Structures and Algorithms • Spring 2025 193

self-organizing works in a static environment, but the gains from using the
optimal structure offsets the expense of building it if it will be used many times

self-organizing can extend the size for which something like sequential search
is fast enough (less frequently used elements get pushed to the end/bottom so
don’t get in the way), but “huge” is “too big to fit into memory”

sequential search is simpler than binary search and can be faster for a
small collection

it can be used for larger collections, but is likely no longer the best choice

binary search
requires a sorted
array

sorting and then
binary search is
always possible, but
there may be better
options for
particular situations

CPSC 327: Data Structures and Algorithms • Spring 2025 194

Selection – Key Points

• selection – find kth element (commonly median)
– searching locates an element by value, selection locates an

element by rank

• applications
– order statistics (k = 1, k = n, k = n/2 – min, max, median)
– quantiles – median, quartiles, deciles, percentiles, …
– filtering – extract or eliminate top/bottom percentage

CPSC 327: Data Structures and Algorithms • Spring 2025 195

Selection – Key Points

• how fast do you need?
– find kth is Θ(1) in a sorted array – can be worthwhile to sort if

you need multiple k values
– quick-select – Θ(n) expected, Θ(n2) worst-case (unlikely)

• based on quicksort – pick pivot, divide into smaller and bigger groups, but
then can determine which group will contain the kth element and recurse
only on that

• too much data to fit in memory, or to even contemplate
storing?
– random sampling to save only a sample of the data set for

processing
– compute quantiles for chunks of data, then combine to

approximate the overaall measures

CPSC 327: Data Structures and Algorithms • Spring 2025 196

sorting and quick-select
lack locality of reference
so are not efficient with
external memory

CPSC 327: Data Structures and Algorithms • Spring 2025 197

Applications of Hashing

• hashing has (many) applications beyond lookup

– data integrity and verification
• checksums

– data deduplication and managing collections of unique elements

– pattern matching
• compare hashes to quickly check if two strings are not equal – only check

characters if the hashes match

– cryptography and data security
• store hashed passwords instead of plaintext
• digital signatures

• key properties

– hash function is deterministic
– (a good) hash function distributes keys well / few collisions
– hash function is not reversible

CPSC 327: Data Structures and Algorithms • Spring 2025 198

generate a hash for the
original document and send
along with the document
receiver generates hash for
the received document and
compares hashes – very
unlikely two different
documents will have the
same hash

similar words hash to the
same or nearby values –
canonicalization e.g.
Soundex, locality-sensitive
hashing

break down words into
smaller pieces and compare
those – n-gram hashing

extensions to string-
matching algorithms that
using hashing to quickly
compare strings (e.g. Rabin-
Karp)

CPSC 327: Data Structures and Algorithms • Spring 2025 199

hash functions distribute keys
without maintaining any order

hashing is one-way – different
things hash to the same value
so you can’t reconstruct the
original from the hash

hash functions may be part of a
pseudorandom number
generator, but aren’t a source
of randomness on their own –
deterministic, require input, no
guarantee of uniform
distribution

