

Graphs and
Graph Algorithms

CPSC 327: Data Structures and Algorithms • Spring 2025 2

Graphs

For storing relationships between pairs of things.

Graphs are extremely important because lots of things can
be modeled as graphs, and lots of problems reduce to
common graph algorithms.

CPSC 327: Data Structures and Algorithms • Spring 2025 3

Graphs

• driving directions (how to travel) from A to B shortest →
(distance, time) path from A to B

• can you get from A to B? reachability→ CPSC 327: Data Structures and Algorithms • Spring 2025 4

Graphs

• what species are critical?
 cut vertices→

• what species would be
affected by the removal of
another? reachability→

• most commonly thanked? high →
indegree

CPSC 327: Data Structures and Algorithms • Spring 2025 5

Graphs

• analyzing song lyrics and text –
connecting consecutive words

CPSC 327: Data Structures and Algorithms • Spring 2025 6

Graphs

Formally, a graph G consists of a set of vertices
 V = { v1, v2, v3, … }
and a set of edges that connect pairs of vertices
 E = { (u,v) | u, v in V }.

n is often used to denote the number of vertices (|V|).
m is often used to denote the number of edges (|E|).

vertices
represent
the things

edges
represent the
relationships

CPSC 327: Data Structures and Algorithms • Spring 2025 7

Some Graph Terminology

• the vertices u, v of an edge (u,v) are the endpoints of the
edge
– an edge is incident on its endpoints

• the degree of a vertex is the number of incident edges
– for directed graphs, the indegree is the number of incoming

edges and the outdegree is the number of outgoing edges

• a path is a route from one vertex to another, following
edges (in the proper direction, if the edges are directed)

• a cycle is a path that starts and ends at the same vertex

an undirected graph with
each vertex labeled with
its degree

CPSC 327: Data Structures and Algorithms • Spring 2025 8

Flavors of Graphs

• undirected vs directed
– does having edge (u,v) imply that edge (v,u) also exists?
– a mixed graph has both directed and undirected edges

• connected vs not connected
– is there a path between every pair of vertices?
– minimum number of edges in a connected graph is n-1

• simple vs not simple (self loops, multiedges)
– a self loop is an edge (v,v)
– multiedges occur when there are multiple edges between a pair

of vertices (u,v)
– maximum number of edges in a simple graph is n(n-1)/2

(undirected) or n(n-1) (directed) = Θ(n2)

• sparse vs dense
– typically “sparse” means O(n) edges while “dense” means O(n2)

CPSC 327: Data Structures and Algorithms • Spring 2025 9

Flavors of Graphs

• cyclic vs acyclic
– an undirected acyclic graph is a tree
– a tree has exactly n-1 edges

• weighted vs unweighted
– associate a value (weight or cost) with each edge
– (less common) associate a value with each vertex

CPSC 327: Data Structures and Algorithms • Spring 2025 10

Flavors of Graphs

• labeled vs unlabeled
– do vertices have unique labels to distinguish them from one

another?

• embedded vs topological
– do the vertices and edges have geometric positions, or are

elements of the graph structure (such as edges or edge weights)
derived from the geometry?

• e.g. TSP over points in the plane or grids of points where edges connect
neighboring points

– an embedding also means there is a particular order to the
edges incident on each vertex

• implicit vs explicit
– is the graph built only as used, or fully constructed in advance?
– typically don’t even create nodes and edges for implicit graphs –

have function to compute incident edges

CPSC 327: Data Structures and Algorithms • Spring 2025 11

Class Prep

• directed or undirected?
• weighted or unweighted?
• simple or not simple?

– self loops or no self loops?
– multiedges or no multiedges?

• sparse or dense?
• cyclic or acyclic?

vertices correspond to valid
configurations (4-digit numbers)

edges connect two vertices if one
button press goes from the first
configuration tot he other

solution is path with fewest edges from
starting config to target config

• embedded or
topological?

• implicit or explicit?
• labeled or unlabeled?

CPSC 327: Data Structures and Algorithms • Spring 2025 12

The Importance of the Flavor

Particular properties of the graph can affect –

• the choice of implementation for the Graph ADT

• the applicable algorithms
– some are only meaningful for certain kinds of graphs
– some exploit certain properties of the graph to achieve greater

efficiency

CPSC 327: Data Structures and Algorithms • Spring 2025 13

Graph ADT

• not generally provided as a data structure unless you are
working with a specialized data structures or graph library

– e.g. Java Collections does not include Graph
– graph libraries often include graph algorithms as well as the data

structure

CPSC 327: Data Structures and Algorithms • Spring 2025 14

Graph ADT

What kinds of operations do we need?

• access graph structure
• modify graph structure – insert, remove

CPSC 327: Data Structures and Algorithms • Spring 2025 15

Graph ADT

• numVertices(), numEdges() – get the number of
vertices/edges in the graph

• vertices(), edges() – get an iterator of the vertices/edges

• aVertex() – get a vertex of the graph

• degree(v) – get the degree of vertex v

• adjacentVertices(v) – get an iterator of the vertices adjacent to v

• incidentEdges(v) – get an iterator of the edges incident on v

• endVertices(e) – get the two end vertices of an edge

• opposite(v,e) – get the end vertex of e that isn't v

• areAdjacent(v,w) – are vertices v,w adjacent to each other? (i.e.
there is an edge connecting them)

CPSC 327: Data Structures and Algorithms • Spring 2025 16

Graph ADT (for directed graphs)

• directedEdges(), undirectedEdges() – get iterator of
directed/undirected edges

• destination(e), source(e) – get the destination/source of edge e

• isDirected(e) – is edge e directed?

• inDegree(v), outDegree(v) – get the in-degree/out-degree of
vertex v

• inIncidentEdges(v), outIncidentEdges(v) – get iterator of the
incoming/outgoing edges of v

• isAdjacentVertices(v), outAdjacentVertices(v) – get iterator
of vertices adjacent to v along incoming/outgoing edges of v

CPSC 327: Data Structures and Algorithms • Spring 2025 17

Graph ADT (for modifying the structure)

• insertEdge(v,w,o) – insert undirected edge connecting vertices
v, w, storing object o with the edge

• insertDirectedEdge(v,w,o) – insert directed edge from vertex v
to vertex w, storing object o with the edge

• insertVertex(o) – insert a new isolated vertex, storing the object
o with the vertex

• removeVertex(v) – remove vertex v and all of its incident edges

• removeEdge(e) – remove edge e (no vertices are removed, even if
the removal creates an isolated vertex)

• makeUndirected(e) – make edge e undirected

• reverseDirection(e) – reverse the direction of the undirected
edge e

• setDirectionFrom(e,v), setDirectionTo(e,v) – make edge e
directed away from/towards vertex v

CPSC 327: Data Structures and Algorithms • Spring 2025 18

Implementing the Graph ADT

What information do we need to capture?

• structural information – edges connecting vertices

• data – vertex labels, edge/vertex weights, …
– i.e. an object o associated with each Vertex and Edge

Building blocks –

• lookup is fast in arrays and if the info needed is stored
directly; searching or computing is slow
– e.g. storing a vertex's degree is faster than counting its incident

edges

• storing info takes space and requires updates (slow)
when the graph changes

CPSC 327: Data Structures and Algorithms • Spring 2025 19

Standard Implementations

Adjacency matrix –
• a 2D array M where M[i][j] = 1 if edge (i,j) exists and 0

otherwise

Adjacency list –
• each vertex stores a list of incident edges

Implementing Graph ADT –
• how is vertex and edge info stored? (the objects o)
• how do we keep track of all of the vertices? edges?
• for adjacency matrix, how do we manage going from a

Vertex to the corresponding index?

CPSC 327: Data Structures and Algorithms • Spring 2025 20

Graph ADT Implementations

adjacency matrix

graph stores
• a list of vertices
• a list of edges
• 2D array, indexed by vertex key

vertex stores
• the associated object
• degree of the vertex
• distinct integer key in the range 0..n-1

edge stores
• the associated object
• endpoint vertices

array stores
• A[i][j] holds the edge from vertex with

index i to vertex with index j (null if
no edge)

adjacency list

graph stores
• a list of vertices
• a list of edges

vertex stores
• the associated object
• degree of the vertex
• list of incident edges

edge stores
• the associated object
• endpoint vertices

CPSC 327: Data Structures and Algorithms • Spring 2025 22

Click to add Title

1

n

n

n2

1

deg(v)

min(deg(u),deg(v))

search through one vertex’s
adjacency list – pick the one
with smaller degreemust scan through

entire row (col) of array

best case doesn’t need
growing, but must initialize
row and col for new vertex

add to (unordered)
list of vertices

access
array[u.key][v.key]

search v’s
adjacency list

CPSC 327: Data Structures and Algorithms • Spring 2025 24

Adjacency Matrix Implementation

graph stores
• a list of vertices
• a list of edges
• 2D array, indexed by vertex key

vertex stores
• the associated object
• degree of the vertex
• reference to the vertex's location in the list of vertices
• distinct integer key in the range 0..n-1

edge stores
• the associated object
• endpoint vertices
• reference to the edge's location in the list of edges

array stores
• A[i][j] holds the edge from vertex with index i to vertex with index j

(null if no edge)

doubly-linked list allows for O(1)
removal given reference to list node

CPSC 327: Data Structures and Algorithms • Spring 2025 25

Adjacency List Implementation

graph stores
• a list of vertices
• a list of edges

vertex stores
• the associated object
• degree of the vertex
• reference to the vertex's location in the list of vertices
• list of incident edges

edge stores
• the associated object
• endpoint vertices
• reference to the edge's location in the list of edges
• references to the edge's location in the incidence lists for its

endpoint vertices

doubly-linked list allows for O(1)
removal given reference to list node

doubly-linked list allows for O(1)
removal given reference to list node

CPSC 327: Data Structures and Algorithms • Spring 2025 27

Implementing the Graph ADT
adjacency list adjacency matrix

numVertices(),
numEdges()

O(1) O(1)

vertices(), edges() O(1) per element O(1) per element

aVertex() O(1) O(1)

degree(v) O(1) O(1)

adjacentVertices(v) O(1) per element O(n) – to scan row/column of array

incidentEdges(v) O(1) per element O(n) – to scan row/column of array

endVertices(e) O(1) O(1)

opposite(v,e) O(1) O(1)

areAdjacent(v,w)
O(min(deg(v,w))) –

search list for vertex
with smaller degree

O(1)

insertEdge(v,w,o) O(1) O(1)

insertVertex(o) O(1)
O(n) – to initialize row/col of array

O(n2) – if array needs to grow

removeVertex(v) O(deg(v)) – to remove
each incident edge

O(1) – with clever bookkeeping (and
wasted space)

O(n2) – shifting in array

removeEdge(e) O(1) O(1)

space O(n+m) O(n2)

CPSC 327: Data Structures and Algorithms • Spring 2025 28

Comparison

Adjacency matrix –

• very time-efficient for isAdjacent – O(1)
• very space-inefficient for sparse graphs
• time-inefficient for traversing edges incident on a vertex –

O(n)
• time-inefficient for insert/remove vertex

Adjacency list –

• space-efficient except for the most dense graphs
• time-efficient for traversing edges incident on a

vertex – O(deg)
• isAdjacent is O(deg) rather than O(1)

