Graph ADT Implementations

adjacency matrix

graph stores

- · a list of vertices
- a list of edges
- 2D array, indexed by vertex key

vertex stores

- · the associated object
- degree of the vertex
- distinct integer key in the range 0..n-1

edge stores

- · the associated object
- · endpoint vertices

array stores

A[i][j] holds the edge from vertex with index i to vertex with index j (null if no edge)

adjacency list

graph stores

- a list of vertices
- a list of edges

vertex stores

- the associated object
- degree of the vertex
- list of incident edges

edge stores

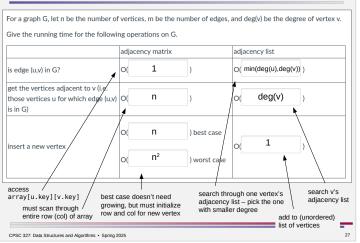
- the associated object
- endpoint vertices

Adjacency Matrix Implementation

graph stores

- doubly-linked list allows for O(1) · a list of vertices removal given reference to list node
- a list of edges
- · 2D array, indexed by vertex key

vertex stores


- · the associated object
- degree of the vertex
- · reference to the vertex's location in the list of vertices
- distinct integer key in the range 0..n-1

edge stores

- the associated object
- · endpoint vertices
- reference to the edge's location in the list of edges

A[i][j] holds the edge from vertex with index i to vertex with index j (null if no edge)

Click to add Title

Adjacency List Implementation

graph stores

- a list of vertices
- a list of edges

doubly-linked list allows for O(1) removal given reference to list node

vertex stores

- the associated object
- degree of the vertex
- reference to the vertex's location in the list of vertices
- list of incident edges

doubly-linked list allows for O(1) removal given reference to list node

edge stores

- the associated object
- endpoint vertices
- reference to the edge's location in the list of edges
- references to the edge's location in the incidence lists for its endpoint vertices

CPSC 327: Data Structures and Algorithms . Spring 2025

	adjacency list	adjacency matrix
numVertices(), numEdges()	O(1)	O(1)
vertices(), edges()	O(1) per element	O(1) per element
aVertex()	O(1)	O(1)
degree(v)	O(1)	O(1)
adjacentVertices(v)	O(1) per element	O(n) – to scan row/column of array
incidentEdges(v)	O(1) per element	O(n) – to scan row/column of array
endVertices(e)	O(1)	O(1)
opposite(v,e)	O(1)	O(1)
areAdjacent(v,w)	O(min(deg(v,w))) – search list for vertex with smaller degree	O(1)
insertEdge(v,w,o)	O(1)	O(1)
insertVertex(o)	O(1)	O(n) – to initialize row/col of array O(n²) – if array needs to grow
removeVertex(v)	O(deg(v)) – to remove each incident edge	$O(1)$ – with clever bookkeeping (and wasted space) $O(n^2)$ – shifting in array
removeEdge(e)	O(1)	O(1)
space	O(n+m)	O(n²)
CPSC 327: Data Structures and Algorithms • Spring 2025 32		

Comparison

Adjacency matrix -

- very time-efficient for isAdjacent O(1)
- very space-inefficient for sparse graphs
- time-inefficient for traversing edges incident on a vertex O(n)
- time-inefficient for insert/remove vertex

Adjacency list –

- space-efficient except for the most dense graphs
- time-efficient for traversing edges incident on a vertex – O(deg)
- isAdjacent is O(deg) rather than O(1)

CPSC 327: Data Structures and Algorithms • Spring 2025

33