

CPSC 327: Data Structures and Algorithms • Spring 2025 35

Graph Traversal

One of the basic things you can do with any collection is
traversal – i.e. visit everything in the collection exactly once.

• for graphs, this is vertices and edges

• need a systematic method to ensure
– correctness – don't leave anything out
– efficiency – don't waste time visiting the same things

over and over

CPSC 327: Data Structures and Algorithms • Spring 2025 36

Graph Traversal

Building blocks and observations –

• Graph ADT provides operations for getting edges incident
on a vertex, and end vertices of an edge
– from a vertex you can find edges, and from an edge you

can find the vertex at the other end

• there may be more than one vertex adjacent to another –
– can't just trace through the graph using a single finger to

point at where you are (loop)
– the possibility of cycles means it is necessary to know what

has been visited already
→ need a container to hold discovered vertices

Using a queue for the container leads to breadth-first
search.

CPSC 327: Data Structures and Algorithms • Spring 2025 37

Breadth-First Search

bfs(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 state[s] = “discovered”
 prev[s] = null
 Q.enqueue(s)
 while Q is not empty do
 u = Q.dequeue()
 process vertex u (early)
 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then
 process edge (u,v)
 state[v] = “discovered”
 prev[v] = u
 Q.enqueue(v)
 state[u] = “processed”
 process vertex u (late)

G is the graph, s is the starting vertex

this is a generalized form of the
algorithm which allows for both
early (before visiting incident
edges) and late (after visiting
incident edges) operations

Q is the queue of
discovered vertices

“process” is application-specific

CPSC 327: Data Structures and Algorithms • Spring 2025 38

Class Prep – BFS

bfs(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 state[s] = “discovered”
 prev[s] = null
 Q.enqueue(s)
 while Q is not empty do
 u = Q.dequeue()
 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then
 state[v] = “discovered”
 prev[v] = u
 Q.enqueue(v)
 state[u] = “processed”

H is unreachable starting from A –
it is never marked as processed

regraded – issue with the correct answer specified

write the vertex names as shown – capital letters

CPSC 327: Data Structures and Algorithms • Spring 2025 39

Implementing the Graph ADT
adjacency list adjacency matrix

numVertices(),
numEdges() O(1) O(1)

vertices(), edges() O(1) per element O(1) per element

aVertex() O(1) O(1)

degree(v) O(1) O(1)

adjacentVertices(v) O(1) per element O(n) – to scan row/column of array

incidentEdges(v) O(1) per element O(n) – to scan row/column of array

endVertices(e) O(1) O(1)

opposite(v,e) O(1) O(1)

areAdjacent(v,w)
O(min(deg(v,w))) –

search list for vertex
with smaller degree

O(1)

insertEdge(v,w,o) O(1) O(1)

insertVertex(o) O(1)
O(n) – to initialize row/col of array

O(n2) – if array needs to grow

removeVertex(v)
O(deg(v)) – to remove

each incident edge

O(1) – with clever bookkeeping (and
wasted space)

O(n2) – shifting in array

removeEdge(e) O(1) O(1)

space O(n+m) O(n2)
CPSC 327: Data Structures and Algorithms • Spring 2025 40

BFS – Implementation and Running Time

bfs(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 state[s] = “discovered”
 prev[s] = null
 Q.enqueue(s)
 while Q is not empty do
 u = Q.dequeue()

 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then

 state[v] = “discovered”
 prev[v] = u
 Q.enqueue(v)
 state[u] = “processed”

O(1) per element O(n) total→

O(1) per element =
 O(deg(u)) (adj list)
O(n) (adj matrix)

enqueue, dequeue, isEmpty are O(1)

set, access state – want O(1), can do
that with Map (hashtable)

total over all iterations of
while loop –
• O(m) for adj list because the

sum of the degrees is 2m –
each edge is counted twice

• O(n2) for adj matrix because
while loop repeats n times

O(n+m) for adjacency list implementation
O(n2) for adjacency matrix implementation

O(1)

O(1)

O(1)

O(1)

n repetitions

total over all iterations
of while loop – O(n)

