

HW 3

CPSC 327: Data Structures and Algorithms • Spring 2025

HW 3

- #3 hashtable with separate chaining
 - insert at the head of each bucket's list $\Theta(1)$ elements within a bucket are unsorted so
 - 55 insertion position doesn't matter for correctness - use the most efficient position

0 1 2 3 4 5 6

3

- $\Theta(1)$ insertion at the end requires also maintaining tail pointers
- if duplicate checking is done, a bucket's list must be searched at that point adding at the tail is only $\Theta(1)$ additional work but insertion as a whole becomes expected $\Theta(n/N)$
- #8 how long does it take to search in a sorted array?
 - though the overall runtime for deletion is dominated by the shifting so sequential search instead of binary search doesn't affect the big-Oh
- #8 where in a max heap will the smallest element be found?
 - n/2 leaves so the search time is still O(n) doesn't improve big-Oh, just constant factors

HW₃

2-4 trees

- structure: a node can have 1-3 keys, k keys \rightarrow k+1 children, all leaves at the same level
- ordering: search tree

CPSC 327: Data Structures and Algorithms • Spring 2025

- split and promote (only) when there's overflow -4 keys in a node
- underflow transfer from an adjacent sibling via the parent if possible, merge with adjacent sibling (pulling a key from the parent) otherwise
- overflow/underflow is handled the same at every non-root level if promotion or merge creates overflow/underflow in parent, repeat
 - at the root, create new root with promoted key (overflow) or delete the root (underflow)

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><image>

HW 3

- hashtables
 - be careful of math errors
 - double hashing probe sequence is $(h(k) + i h'(k)) \mod N$
 - the secondary hash function is applied to the original key h'(k), not h(h'(k))
 - h'(k) specifies how many spaces to skip for the next spot to check
 - handling deletion

CPSC 327: Data Structures and Algorithms • Spring 2025

- for sequential probing, reinsert all keys immediately following the deleted key
- for quadratic probing and double hashing, use deletion markers

- 2-4 tree deletion
 - merge if all adjacent siblings only have 1 key

HW 3

max heaps

CPSC 327: Data Structures and Algorithms • Spring 2025

 structure: complete binary tree – missing leaves (gaps) only at the right end of the last level

18

https://www.usna.edu/Users/cs/crabbe/SI321/current/red-black/2-3.html

- ordering: parent \geq children
- insert as last element, bubble up (swap parent and child) to fix ordering
- remove max: swap root and last, delete last, bubble root down (swap parent and largest child) to fix ordering

