algorithm dijkstra(G,s):
Dijkstra's Algorithm 0{ e

dist[s] < 0O

. . @ PQ ~ makeQueue(V)
Runnlng time. while PQ is not empty do
L) Vv < PQ.removeMin()
@ initialize dist[v] labels ofcyrfezsht%n?idegjc i?g«;z ET(V'l)‘)th
o . 1 1stluf > aistlv]|+w(v,u en
O(n) with O(2) record—!(eepl_ngg‘ diseln] = CAsCivRAv.0)
and O(1) per element iteration 1 PQ.decreaseKey (u)
(possible with any graph implementation)
® make PQ with n elements
O(makePQ)
® n is-empty checks + n vertices removed from PQ
O(n X 1) + O(n X removeMin) [O(1) isEmpty() possible with any PQ
implementation)
® 2m (undirected) or m (directed) edges visited over all
vertices [2m for undirected because an edge is visited from each of its endpoints]

O(m) assuming O(1) per element iteration (possible with adjacency list)
® up to O(1) + O(decreaseKey) per edge (if label is updated)

assuming O(1) record-keeping
,— O(makePQ +n X removeMin + m X decreaseKey) total ™~

Locators

decrease key can be done in O(log n) time if the location
(index) of the key in the heap is known
update key, then bubble up (min heap) to fix ordering property

change 24 to 15

searching for a key in a heap —
O(n) — may need to check all elements

how to avoid search?
look up instead!
what if we add a map key - array index?

0O(1) to locate key with hashtable
map must be updated for each bubble up or bubble down swap
but that only involves two elements, so two updates — +O(1) per swap doesn't

change the big-Oh for bubbling -

0/deleti heap: %

CPSC 327: Data Structures and Algorithms + Spring 2025 https://c:

Dijkstra's Algorithm
- O(makePQ + n X removeMin + m X decreaseKey) total
operation heap
O(n log n) — repeated insert
makeQueue O(n) — heapify
removeMin O(log n)
decreaseKey O(log n) (**)

total running timeé. o(n + n log n + m log n) = O((n+m) log n)
for Dijkstra's
algorithm = O(m log n) for connected graphs
This is —
O(n log n) for sparse graphs [m = O(n)]
O(n? log n) for dense graphs [m = O(n?)]

(**¥) assuming O(1) to locate element within PQ (which can be done with a
locator), otherwise O(n) to search PQ to find entry

CPSC 327: Data Structures and Algorithms + Spring 2025

Dijkstra's Algorithm

- O(makePQ + n X removeMin + m X decreaseKey) total

operation array — unsorted heap
O(n) — take elements in O(n log n) — repeated insert
IELEQUENE whatever order O(n) — heapify
. O(n) — search, then swap
removeMin with st O(log n)
decreaseKey O(1) — update key value (**) O(log n) (**)
total rurfming O(n+nlogn+mlogn) =
time for 2 — 2 O((n+m) log n
Dijkstra's QN 52) = O iy e
algorithm = O(m log n) for connected graphs
Observation:

for sparse graphs [m = O(n)], the heap is more efficient
for dense graphs [m = O(n?)], the unsorted array is more

efficient

(**) assuming O(1) to locate element within PQ (which can be done with a
o locator), otherwise O(n) to search PQ to find entry

Other Options

(Binary) heaps are not the only choice for implementing
priority queues.

d-ary heaps
each node has d children instead of two, reducing the height of
the tree by a factor of log d
insert — O(log n / log d)
removeMin — O(d log n / log d)
have to check all d children at each level to determine smallest element
d should be chosen to be m/n (the average degree of the graph)
- total time for Dijkstra's algorithm:
O((nd+m) log n / log d) = O(m log n / log (m/n))
* for sparse graphs [m = O(n)], get O(n log n) — as good as a binary heap
for dense graphs [m = O(n?)], get O(n?) — as good as an unsorted array
in between [m = n**?], get O(m) - & is a constant

CPSC 327: Data Structures and Algorithms + Spring 2025 92

Shortest Paths with Negative Edges

Dijkstra's algorithm requires w(u,v) > 0.
But what if there are edges with negative weights?

Approach this like you are dealing with a special case:
see where the algorithm you have breaks.

Dijkstra's algorithm relies on d(s,w) < d(s,v) for all vertices
w on the shortest paths - v

negative or zero weights mean that d(s,w) = d(s,v) is
possible

thus v may be removed from the PQ before w, and dist[v] is not
correct at the time v is marked 'processed' because w has not
yet been processed

CPSC 327: Data Structures and Algorithms + Spring 2025 94

Other Options

minimum

(Binary) heaps are not the only choice. |©® (1)
OO

Fibonacci heaps
maintain a forest of heaps
insert/remove involves splitting and merging heaps in order to
keep the degree of each node low and the size of each subtree
sufficiently high
achieves O(log n) removeMin and O(1) decreaseKey
amortized time — on average
- total time for Dijkstra's algorithm: O(m + n log n)
* for sparse graphs [m = O(n)], get O(n log n) — as good as a binary heap
for dense graphs [m = O(n?)], get O(n?) — as good as an unsorted array

CPSC 327: Data Structures and Algorithms + Spring 2025 %

Bellman-Ford

Idea.

abandon traversal — instead repeatedly update every
edge in the graph

algorithm bellmanford(G,s):
for all v in V do
dist[v] « o
) (the longest path from s to any
dist[s] 0 reachable vertex has length n-1, so

/ that many repetitions will serve to

repeat |V|-1 times propagate dist[s] to every vertex)

updated « false
for all edges e=(v,u) in E do
if dist[u] > dist[v]+w(v,u) then
dist[u] = dist[v]+w(v,u)
updated « true
if tupdated then (can stop repetitions early if there
break are no more updates to propagate)

CPSC 327: Data Structures and Algorithms + Spring 2025 97

Bellman-Ford(-Moore) algorithm

L. R. Ford, 1927-2017

American mathematician also known for
network flow problems
Ford-Fulkerson algorithm (max flow)
Ford-Johnson algorithm (sorting)

Richard Bellman, 1920-1984
American applied mathematician also known for
introducing dynamic programming (1953)

Bellman equation, Hamilton-Jacobi-Bellman equation
(optimal control theory)

curse of dimensionality — exponential increase in volume
when adding dimensions

Edward Moore, 1925-2003

American professor of mathematics and computer science also known for
Moore finite state machine
an early pioneer of artificial life
Moore graphs
Shortest Path Faster Algorithm (variation of Bellman-Ford)

https://en.wikipedia.org/wiki/Richard_E._Bellman

Negative Weight Cycles

A possibility with negative weight edges is that there is a
negative weight cycle.

important to detect, because “shortest path” isn't
meaningful in that case

Observation: a negative-weight cycle means that there is
always at least one edge being updated in a given round of
Bellman-Ford.

Solution: repeat n times. (one extra repetition)

there is a negative-weight cycle if the loop terminates because
the nth iteration has been completed instead of the no-more-
updates break being reached

B

CPSC 327: Data Structures and Algorithms + Spring 2025 100

algorithm bellmanford(G,s):

Bellman-Ford

for all v in V do
1) dist[v] « »
dist[s] < 0

repeat |V]|-1 times

updated « false

for all edges e=(v,u) in E do
0.0 if dist[u] > dist[v]+w(v,u) then

dist[u] = dist[v]+w(v,u)

L updated « true

if lupdated then

break

Running time.

® initialize dist[v] for all vertices

O(n) assuming O(1) record-keeping and O(1) per element
iteration (possible with any graph implementation)

® for all edges in E, repeated up to |V|-1 times ©
O(m) X O(n) = O(mn) assuming O(1) record-keeping and O(1)
per element iteration (possible with any graph implementation)

- O(nm) total

CPSC 327: Data Structures and Algorithms + Spring 2025 9%

Other Related Algorithms

Dijkstra’s and Bellman-Ford find the shortest path from a
vertex s to all other vertices

all pairs shortest path — find shortest path from every
vertex to every other vertex
for each vertex v in V, run Dijkstra's algorithm with v as the
starting vertex

- O(n? log n) to O(n®) depending on the density of the graph
and the PQ implementation

Floyd-Warshall algorithm
- O(n®)
lower constant factors than the O(n®) version of Dijkstra's

simpler to implement than Dijkstra's, though finding the
shortest path and not just the distance takes more effort

CPSC 327: Data Structures and Algorithms + Spring 2025 101

Floyd-Warshall

* Robert Floyd, 1936-2001
* computer scientist also known for
Floyd's cycle-finding algorithm
Floyd-Steinberg dithering
contributions to Hoare Logic
* received the Turing Award in 1978 for
contributions relating to the creation of
efficient and reliable software

» Stephen Warshall, 1935-2006
+ American computer scientist also known
for

work in operating systems, compilers,
language design, and operations research

https://en.wikipedia.org/wiki/Robert_W._Floyd

CPSC 327: Data Structures and Algorithms + Spring 2025 https://en wikipedia. orq/wiki/Stephen Warshall

Takeaways

» know the algorithm (can trace it), when it is applicable, its
running time
Dijkstra’s algorithm — heap, fancier implementations

Bellman-Ford — supports negative weight edges, detects negative
weight cycles

* know what it is, suitable algorithms/approaches for
solving and their running times
all pairs shortest path — repeated Dijkstra, Floyd-Warshall
transitive closure — repeated bfs, Floyd-Warshall

CPSC 327: Data Structures and Algorithms + Spring 2025 104

Other Algorithms

* transitive closure — for all pairs of vertices (u,v), determine
whether v is reachable from u

for each vertex u in V, run bfs(u) to find the reachable vertices
-~ O(n? + nm)

run Floyd-Warshall algorithm — v is reachable from u if the length
of the shortest path u- v is not «

- o)

CPSC 327: Data Structures and Algorithms + Spring 2025 103

