

CPSC 327: Data Structures and Algorithms • Spring 2025 88

algorithm dijkstra(G,s):
 for all v in V do
 dist[v] ← ∞
 dist[s] 0←
 PQ makeQueue(V)←
 while PQ is not empty do
 v PQ.removeMin()←
 for each incident edge e=(v,u)
 if dist[u] > dist[v]+w(v,u) then
 dist[u] = dist[v]+w(v,u)
 PQ.decreaseKey(u)

Dijkstra's Algorithm

Running time.

• initialize dist[v] labels
– O(n) with O(1) record-keeping

and O(1) per element iteration
(possible with any graph implementation)

• make PQ with n elements
– O(makePQ)

• n is-empty checks + n vertices removed from PQ
– O(n ✕ 1) + O(n ✕ removeMin) [O(1) isEmpty() possible with any PQ

implementation)

• 2m (undirected) or m (directed) edges visited over all
vertices [2m for undirected because an edge is visited from each of its endpoints]

– O(m) assuming O(1) per element iteration (possible with adjacency list)

• up to O(1) + O(decreaseKey) per edge (if label is updated)

– assuming O(1) record-keeping
→ O(makePQ + n ✕ removeMin + m ✕ decreaseKey) total

❶

❷

❸
❹

❺

❶

❷

❸

❹

❺

CPSC 327: Data Structures and Algorithms • Spring 2025 89

Dijkstra's Algorithm

operation heap

makeQueue
O(n log n) – repeated insert

O(n) – heapify

removeMin O(log n)

decreaseKey O(log n) (**)

total running time
for Dijkstra's

algorithm

O(n + n log n + m log n) = O((n+m) log n)

= O(m log n) for connected graphs

(**) assuming O(1) to locate element within PQ (which can be done with a
locator), otherwise O(n) to search PQ to find entry

This is –
• O(n log n) for sparse graphs [m = O(n)]
• O(n2 log n) for dense graphs [m = O(n2)]

→ O(makePQ + n ✕ removeMin + m ✕ decreaseKey) total

CPSC 327: Data Structures and Algorithms • Spring 2025 90

Locators

• decrease key can be done in O(log n) time if the location
(index) of the key in the heap is known
– update key, then bubble up (min heap) to fix ordering property

–

–

• searching for a key in a heap –
– O(n) – may need to check all elements

• how to avoid search?
– look up instead!
– what if we add a map key → array index?

• O(1) to locate key with hashtable
• map must be updated for each bubble up or bubble down swap

– but that only involves two elements, so two updates – +O(1) per swap doesn’t
change the big-Oh for bubbling

https://cs.stackexchange.com/questions/6990/deletion-in-min-max-heaps

change 24 to 15

CPSC 327: Data Structures and Algorithms • Spring 2025 91

Dijkstra's Algorithm

operation array – unsorted heap

makeQueue O(n) – take elements in
whatever order

O(n log n) – repeated insert
O(n) – heapify

removeMin O(n) – search, then swap
with last

O(log n)

decreaseKey O(1) – update key value (**) O(log n) (**)

total running
time for

Dijkstra's
algorithm

O(n + n2 + m) = O(n2)

O(n + n log n + m log n) =
O((n+m) log n)

= O(m log n) for connected graphs

(**) assuming O(1) to locate element within PQ (which can be done with a
locator), otherwise O(n) to search PQ to find entry

Observation:
• for sparse graphs [m = O(n)], the heap is more efficient
• for dense graphs [m = O(n2)], the unsorted array is more

efficient

→ O(makePQ + n ✕ removeMin + m ✕ decreaseKey) total

CPSC 327: Data Structures and Algorithms • Spring 2025 92

Other Options

(Binary) heaps are not the only choice for implementing
priority queues.

• d-ary heaps
– each node has d children instead of two, reducing the height of

the tree by a factor of log d
– insert – O(log n / log d)
– removeMin – O(d log n / log d)

• have to check all d children at each level to determine smallest element

– d should be chosen to be m/n (the average degree of the graph)
→ total time for Dijkstra's algorithm:

O((nd+m) log n / log d) = O(m log n / log (m/n))
• for sparse graphs [m = O(n)], get O(n log n) – as good as a binary heap
• for dense graphs [m = O(n2)], get O(n2) – as good as an unsorted array
• in between [m = n1+δ], get O(m) - δ is a constant

CPSC 327: Data Structures and Algorithms • Spring 2025 93

Other Options

(Binary) heaps are not the only choice.

• Fibonacci heaps
– maintain a forest of heaps
– insert/remove involves splitting and merging heaps in order to

keep the degree of each node low and the size of each subtree
sufficiently high

– achieves O(log n) removeMin and O(1) decreaseKey
• amortized time – on average

→ total time for Dijkstra's algorithm: O(m + n log n)
• for sparse graphs [m = O(n)], get O(n log n) – as good as a binary heap
• for dense graphs [m = O(n2)], get O(n2) – as good as an unsorted array

CPSC 327: Data Structures and Algorithms • Spring 2025 94

Shortest Paths with Negative Edges

Dijkstra's algorithm requires w(u,v) > 0.
But what if there are edges with negative weights?

Approach this like you are dealing with a special case:
see where the algorithm you have breaks.

• Dijkstra's algorithm relies on d(s,w) < d(s,v) for all vertices
w on the shortest path s → v

• negative or zero weights mean that d(s,w) ≥ d(s,v) is
possible
– thus v may be removed from the PQ before w, and dist[v] is not

correct at the time v is marked 'processed' because w has not
yet been processed

CPSC 327: Data Structures and Algorithms • Spring 2025 97

Bellman-Ford

algorithm bellmanford(G,s):
 for all v in V do
 dist[v] ← ∞

 dist[s] 0←

 repeat |V|-1 times
 updated false←
 for all edges e=(v,u) in E do
 if dist[u] > dist[v]+w(v,u) then
 dist[u] = dist[v]+w(v,u)
 updated true←
 if !updated then
 break

(can stop repetitions early if there
are no more updates to propagate)

(the longest path from s to any
reachable vertex has length n-1, so
that many repetitions will serve to
propagate dist[s] to every vertex)

Idea.
• abandon traversal – instead repeatedly update every

edge in the graph

CPSC 327: Data Structures and Algorithms • Spring 2025 98

Bellman-Ford(-Moore) algorithm

• L. R. Ford, 1927-2017
• American mathematician also known for

– network flow problems
– Ford-Fulkerson algorithm (max flow)
– Ford-Johnson algorithm (sorting)

• Richard Bellman, 1920-1984
• American applied mathematician also known for

– introducing dynamic programming (1953)
– Bellman equation, Hamilton-Jacobi-Bellman equation

(optimal control theory)
– curse of dimensionality – exponential increase in volume

when adding dimensions

• Edward Moore, 1925-2003
• American professor of mathematics and computer science also known for

– Moore finite state machine
– an early pioneer of artificial life
– Moore graphs
– Shortest Path Faster Algorithm (variation of Bellman-Ford)

https://en.wikipedia.org/wiki/Richard_E._Bellman CPSC 327: Data Structures and Algorithms • Spring 2025 99

Bellman-Ford algorithm bellmanford(G,s):
 for all v in V do
 dist[v] ← ∞

 dist[s] 0←

 repeat |V|-1 times
 updated false←
 for all edges e=(v,u) in E do
 if dist[u] > dist[v]+w(v,u) then
 dist[u] = dist[v]+w(v,u)
 updated true←
 if !updated then
 break

Running time.

• initialize dist[v] for all vertices
– O(n) assuming O(1) record-keeping and O(1) per element

iteration (possible with any graph implementation)

• for all edges in E, repeated up to |V|-1 times
– O(m) ✕ O(n) = O(mn) assuming O(1) record-keeping and O(1)

per element iteration (possible with any graph implementation)

→ O(nm) total

❶

❷❸

❶

❷ ❸

CPSC 327: Data Structures and Algorithms • Spring 2025 100

Negative Weight Cycles

A possibility with negative weight edges is that there is a
negative weight cycle.
• important to detect, because “shortest path” isn't

meaningful in that case

Observation: a negative-weight cycle means that there is
always at least one edge being updated in a given round of
Bellman-Ford.

Solution: repeat n times. (one extra repetition)
• there is a negative-weight cycle if the loop terminates because

the nth iteration has been completed instead of the no-more-
updates break being reached

CPSC 327: Data Structures and Algorithms • Spring 2025 101

Other Related Algorithms

• Dijkstra’s and Bellman-Ford find the shortest path from a
vertex s to all other vertices

• all pairs shortest path – find shortest path from every
vertex to every other vertex

– for each vertex v in V, run Dijkstra's algorithm with v as the
starting vertex
→ O(n2 log n) to O(n3) depending on the density of the graph
and the PQ implementation

– Floyd-Warshall algorithm
→ O(n3)

• lower constant factors than the O(n3) version of Dijkstra's
• simpler to implement than Dijkstra's, though finding the

shortest path and not just the distance takes more effort

CPSC 327: Data Structures and Algorithms • Spring 2025 102

Floyd-Warshall

• Robert Floyd, 1936-2001
• computer scientist also known for

– Floyd’s cycle-finding algorithm
– Floyd-Steinberg dithering
– contributions to Hoare Logic

• received the Turing Award in 1978 for
contributions relating to the creation of
efficient and reliable software

• Stephen Warshall, 1935-2006
• American computer scientist also known

for
– work in operating systems, compilers,

language design, and operations research

https://en.wikipedia.org/wiki/Robert_W._Floyd
https://en.wikipedia.org/wiki/Stephen_Warshall

CPSC 327: Data Structures and Algorithms • Spring 2025 103

Other Algorithms

• transitive closure – for all pairs of vertices (u,v), determine
whether v is reachable from u

– for each vertex u in V, run bfs(u) to find the reachable vertices
→ O(n2 + nm)

– run Floyd-Warshall algorithm – v is reachable from u if the length
of the shortest path u→v is not ∞
→ O(n3)

CPSC 327: Data Structures and Algorithms • Spring 2025 104

Takeaways

• know the algorithm (can trace it), when it is applicable, its
running time
– Dijkstra’s algorithm – heap, fancier implementations
– Bellman-Ford – supports negative weight edges, detects negative

weight cycles

• know what it is, suitable algorithms/approaches for
solving and their running times
– all pairs shortest path – repeated Dijkstra, Floyd-Warshall
– transitive closure – repeated bfs, Floyd-Warshall

