

Developing Algorithms

CPSC 327: Data Structures and Algorithms • Spring 2025 2

Developing Algorithms

Strategies –

• realize your problem is another well-known problem in
disguise
– it is searching or sorting
– there’s a data structure for that
– it is a graph problem

• develop a new algorithm
– divide-and-conquer
– iterative
– series of choices – greedy, recursive backtracking, dynamic

programming

CPSC 327: Data Structures and Algorithms • Spring 2025 3

Modeling With Graphs

Things to decide –

• what the vertices represent
– vertices represent things

• what the edges represent
– edges represent connections (relationships) between pairs of

things
• does the relationship simply exist or not exist? – indicated by presence or

absence of edge
• does the relationship have a strength? – modeled by edge weights
• is the relationship one-way? – indicated by directed or undirected edges

• what a solution to the original problem looks like in the
graph
– ideally it is a concept for which there is a known algorithm

• e.g. reachability, shortest path, minimum spanning tree, cut vertices

CPSC 327: Data Structures and Algorithms • Spring 2025 4

Modeling With Graphs

As you think about graph algorithms, identify –

• the flavor of graph

– connected or not connected
– simple or containing self loops and/or

multiedges
– sparse vs dense
– cyclic vs acyclic
– weighted vs unweighted

• if weighted, are there negative weights?
negative weight cycles?

– embedded vs topological
• is there a particular ordering of incident

edges for each vertex?

– explicit vs implicit
• does a graph data structure need to be built?

these properties are
consequences of the
modeling choices rather
than independent decisions

they are important to
recognize because they can
affect the algorithms used
and the choice of
implementation for the
graph structure (and other
data structures)

e.g. representing an
embedded graph would
require an adjacency list
implementation
e.g. (recursive) DFS doesn't
require explicit graph
structure, but BFS and
Dijkstra's do (at least for
vertices)

