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Algorithms for MST

Kruskal's algorithm – 
• start with a tree T containing no edges
• repeatedly add the lowest-cost edge remaining that 

connects two different chunks of the tree-in-progress

Prim's algorithm – 
• start with a tree T containing a single vertex S
• repeatedly add the cheapest edge connecting a vertex in 

S and a vertex in V-S to T
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Kruskal's Algorithm

Running time using union-find?

• initialization: makeset(v) for each vertex
– O(makeset) per iteration, n iterations

• finding the lowest-cost edge
– can sort edges by weight, then iterate through
– O(m log n) to sort + O(1) time per iteration, m iterations

• determine if an edge connects two separate chunks
– O(find) per iteration, m iterations

• combine two chunks when an edge is chosen
– O(union) per edge chosen, n-1 edges chosen

→ total: O(n ✕ makeset + m log n + m ✕ find + n ✕ union)

MST  empty set←

for each v in V
  makeset(v)

E’  sort E by weight←

for each edge e=(u,v) in E’
  if find(u) != find(v)
    add e to MST
    union(u,v)

❶

❷

❸

❹

❶
❷

❸

❹
steps contribute 
O(1) per

❺

❺

❺
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Union-Find Summary

• union-by-rank list implementation yields O((n+m) log n) 
for Kruskal's algorithm
– O(1) makeset(x)
– O(1) find(x)
– O(n log n) for a series of n union(x,y)

• union-by-rank tree implementation with path compression 
yields O(m log n) for Kruskal's algorithm
– O(1) makeset(x)
– effectively O(1) find(x) and union(x,y)

• the tree height is a very slow-growing log*
• amortized over a series of operations

total: O(n ✕ makeset + m log n + m ✕ find + n ✕ union)
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Amortized vs. Average

Amortized time is a time-averaged running time.

• based on a worst-case analysis of the running time of an 
arbitrary sequence of operations
– worst-case running time of any sequence of n operations / n

• gives the average worst-case performance of each 
operation
– but any particular instance of the operation may be (far) worse

• useful when expensive cases exist but occur infrequently
– e.g. dynamic array resizing
– e.g. union-find with path compression
– e.g. splay trees
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Amortized vs. Average

Amortized time is a time-
averaged running time.

• worst-case analysis of the 
running time of an arbitrary 
sequence of operations
– worst-case running time of 

any sequence of n 
operations / n

• average worst-case 
performance of each 
operation
– any single operation may be 

(far) worse
– total for the sequence will 

not exceed n ✕ operation 
time

Average time is an instance-
averaged running time.

• average-case analysis of 
the running time of an 
operation
– based on the probability of 

each input instance 
occurring

• expected performance of 
each operation
– any single operation may be 

(far) worse
– low (but non-zero) 

probability that total for a 
sequence will exceed n ✕ 
operation time
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Algorithms for MST

Prim's algorithm – 
• start with a tree T containing a 

single vertex S
• repeatedly add the cheapest 

edge connecting a vertex in S 
and a vertex in V-S to T
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Prim's Algorithm

The idea:
• repeatedly add the cheapest edge connecting a vertex in 

S and a vertex in V-S to T

Implementation details:
• cheapest edge connecting S to V-S → ??

– the set of eligible edges changes as new vertices are added to 
the tree → sounds like a priority queue ordered by edge weight

mark s as visited
add s's incident edges to PQ
while PQ is not empty (and T has fewer than n-1 edges)
  e  PQ.removeMin()←
  if e has an unvisited end vertex v,
    add e to T
    mark v as visited
    add v's incident edges to PQ (omitting those connecting 
      to already-visited vertices)
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Prim's Algorithm

Running time?
• pick any starting vertex

→ O(1)

• one iteration per edge 
→ O(m)

• removeMin 
→ O(log m) per iteration, up to m iterations

• traverse incident edges 
→ O(m) total

• iterate through 2m edges (once from each end) at O(1) per

• add incident edges to queue 
→ O(m log n) total

• O(log m) to add to queue; each edge is added at most once

• mark as visited / check status 
→ O(1) per

→ total: O(m log n)
– using heap implementation of priority queue

• need incident edges → choose 
adjacency list implementation for graph

mark s as visited
add s's incident edges to PQ
while PQ is not empty (and T has fewer than 
 n-1 edges)
  e  PQ.removeMin()←
  if e has an unvisited end vertex v,
    add e to T
    mark v as visited
    add v's incident edges to PQ (omitting
      those connecting to already-visited
      vertices)

❶

❷

❸

❺

❸❹

other steps contribute 
O(1) per

❹

❸

❷

❶

❺

❹
❺

❺
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Prim's Algorithm

Can we do better?
– O(m log n) isn't an improvement over O((n+m) log n) or         

O(m log n) for Kruskal's algorithm

The running time is dominated by the queue operations.
More efficient insert and remove isn't that feasible (we need 
both), but what about doing fewer operations?

– many of the edges in the priority queue aren't useful because 
they connect within S

– alternative: store the vertices in V-S in the priority queue instead 
of edges, ordered by the cost of the cheapest edge between the 
vertex and a vertex of S

• the idea is to maintain a collection of what could be the next vertex added 
to the spanning tree, along with the cheapest cost of connecting that 
vertex
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Prim's Algorithm

algorithm prim(G,w)
 input: connected undirected
  graph G with edge weights w
 output: MST defined by the
  'prev' labels

for all u in V
  cost[u]  ← ∞
  prev[u]  null←
s  a vertex of G←
cost[s]  0←

PQ  makeQueue(V)←
while PQ is not empty
  v  PQ.removeMin()←
  for each edge (v,z) in E
    if cost[z] > w(v,z) then
      cost[z] = w(v,z)
      prev[z] = (v,z)
      PQ.decreaseKey(z)

For each vertex in V-S, keep 
track of the cheapest known 
edge connecting it to S.

– prev(v) = the cheapest known 
edge connecting v to S

– cost(v) = weight of edge 
prev(v)

“Known” edges are those 
incident on vertices in S.

– the information is complete for 
any vertex in V-S connected 
to one in S

– update prev/cost information 
when we add a vertex to S 
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Prim's Algorithm

Running time?

• same structure as Dijkstra's algorithm, same running time
– O((n+m) log n) for a heap-based priority queue
– can do better with a fancier PQ implementation – O(n log n) for 

sparse, O(n2) for dense
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MST

Prim's or Kruskal's?

• can achieve better running time with Prim's algorithm and 
a fancy PQ implementation

• (standard) PQ is a more common data structure than 
union-find (or a fancy PQ)

• need to repeat Prim's on each connected component if 
the graph is not connected
– Kruskal's handles disconnected graphs without anything 

additional
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Takeaways

• definitions: spanning tree, minimum spanning tree

• algorithms for MST – kruskal’s, prim’s
– what the algorithm is – be able to trace
– running time and pros/cons of each algorithm

• union-find data structure
– operations – makeset, find, union
– union-by-rank list implementation – what it is, running time
– union-by-rank tree implementation – running time
– as an example of an incremental approach to data structure 

development
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Recap

• graph algorithms
– BFS-based algorithms – reachability, connected components, 

unweighted shortest path, 2-coloring

– DFS-based algorithms – reachability, cycle detection, cut vertices, cut 
edges, strongly connected components, topological sort

– shortest weighted paths – Dijkstra's algorithm, Bellman-Ford, Floyd-
Warshall (all pairs shortest path)

– MST – Kruskal's and Prim's algorithms

– max flow, min flow, … 

• new data structure
– union-find

• a surprising insight
– sometimes the simple solutions are better (or at least not worse)

• and a less-surprising observation
– the best implementation depends on the situation


