

CPSC 327: Data Structures and Algorithms • Spring 2025 40

Developing Algorithms

Strategies –

• realize your problem is another well-known problem in
disguise
– it is searching or sorting
– there’s a data structure for that
– it is a graph problem

• develop a new algorithm
– divide and conquer
– series of steps – iterative
– series of choices – greedy, backtracking, branch and bound,

dynamic programming

CPSC 327: Data Structures and Algorithms • Spring 2025 41

Algorithmic Structures

Iterative algorithms proceed forward towards the solution
one step at a time.

Recursive algorithms have friends solve subproblems.
– construct a complete solution out of complete solutions for

smaller subproblems
• induction lets you demonstrate that the solution for the bigger problem is

correct

– base case defines when you stop
• making progress ensures that you will get there (recursion will terminate)

CPSC 327: Data Structures and Algorithms • Spring 2025 42

Recursive Patterns

Characterized by the number and size of subproblems –

• 1 friend – can often easily be written as iterative instead

– constant amount – subproblem is smaller by a fixed number of
elements (typically 1)

• e.g. an = a an-1 or n! = n (n-1)!

– constant factor – subproblem is a fixed fraction of the size
(typically ½) – “decrease and conquer”

• e.g. binary search
• e.g. an = (an/2)2 if n is even, a (a(n-1)/2)2 if n is odd

– variable factor – subproblem is smaller, but the size of the
reduction varies

• e.g. gcd(m,n) = gcd(n,m mod n)

CPSC 327: Data Structures and Algorithms • Spring 2025 43

Recursive Patterns

Characterized by the number and size of subproblems –

• 2+ friends

– divide-and-conquer – split into b ≥ 2 subproblems of size n/b
(b is typically 2)

– case analysis – each friend gets a subproblem resulting from a
different alternative

CPSC 327: Data Structures and Algorithms • Spring 2025 46

How to Design Algorithms

• establish the problem

• identify avenues of attack

• define the algorithm

• show termination and correctness

• determine efficiency

CPSC 327: Data Structures and Algorithms • Spring 2025 47

How to Design (Divide-and-Conquer) Algorithms

CPSC 327: Data Structures and Algorithms • Spring 2025 48

How to Design (Divide-and-Conquer) Algorithms

CPSC 327: Data Structures and Algorithms • Spring 2025 49

CPSC 327: Data Structures and Algorithms • Spring 2025 51

How to Design (Divide-and-Conquer) Algorithms

CPSC 327: Data Structures and Algorithms • Spring 2025 52

How to Design (Divide-and-Conquer) Algorithms

Recursive algorithms tend to lead to recurrence relations in one of two forms:

split off b elements
T(n) = a T(n-b) + f(n) where f(n) = 0 or Θ(nc logd n)

divide into subproblems of size n/b
T(n) = a T(n/b) + f(n) where Θ(nc logd n)

