
  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2025 33

Graph ADT Implementation

• code organization

– AbstractGraph, AbstractVertex, and AbstractEdge should 
contain instance variables common to both adjacency list and 
adjacency matrix implementations

– AbstractGraph should contain bodies for those methods that 
can be implemented there

– helper classes such as ListNode should be inner classes
CPSC 327: Data Structures and Algorithms  •  Spring 2025 34

Graph ADT Implementation

• running times
– be sure to achieve                                                                     

the running times                                                                           
discussed in class

• avoid unnecessary                                                                                
loops, searching

– to achieve O(1) removal from a list (and for full credit), use your 
own doubly-linked list implementation for lists and store the 
reference to the list node

• can’t just add prev, next pointers to AbstractVertex/AbstractEdge because 
in the adjacency list implementation, an edge will appear in three lists – 
the list of edges in the graph and the list of incident edges for each of the 
edge’s vertices

• no need to search for the list node if there’s a reference stored!

CPSC 327: Data Structures and Algorithms  •  Spring 2025 35

Graph ADT Implementation

• Java things
– .equals() vs ==

• a == b is for checking if a and b are the same object (same location in 
memory) 

– e.g. list nodes
– use == when object identity matters – different objects are different things 

even if they have the same state

• a.equals(b) is for checking if a and b are equivalent objects (different 
locations in memory but viewed as interchangeable)

– e.g. String

– only cast if you need methods of the more specific type


