Graph ADT Implementation

 code organization

AbstractGraph, AbstractVertex, and AbstractEdge should
contain instance variables common to both adjacency list and
adjacency matrix implementations

Adjacency Matrix Implementation Adjacency List Implementation
graph stores h
- alist of vertices 7 doubly-linked list allows for O(1) araph stores _))

. alist of edges [removal given reference to list node - alist of vertices doubly-linked list allows for O(1)

S o e] . alistof edges - removal given reference to list node
vertex stores vertex stores 3

" the associated object * the associated object

« degree of the vertex + degree of the vertex

. reference to the vertex's location in the list of vertices - _reference to the vertex's location in the list of vertices

" distinct integer key in the range 0..n-1 +Tist of incident edges | ~_ doubly-linked list allows for O(1)
CEEEDS i RETES removal given reference to list node
~the associated object *the associated object

- endpoint vertices - endpoint vertices

- reference to the edge's location in the list of edges -_reference to the edge's location in the list of edges
reyere) “references to the edge's location in the incidence fists for its

endpoint vertices

+ Alilf] holds the edge from vertex with index i to vertex with index j (null «
if no edge)

AbstractGraph should contain bodies for those methods tha
can be implemented there

helper classes such as ListNode should be inner classes =

Graph ADT Implementation

+ Java things
.equals() vs ==
« a == bis for checking if a and b are the same object (same location in
memory)
e.g. list nodes
use == when object identity matters — different objects are different things
even if they have the same state
+ a.equals(b) is for checking if a and b are equivalent objects (different
locations in memory but viewed as interchangeable)
e.g. String

only cast if you need methods of the more specific type

CPSC 327: Data Structures and Algorithms + Spring 2025 35

Graph ADT Implementation

adjacency list adjacency matrix
. . numVertices(),
° running times numEdges() Cf) Gl
. vertices(), edges() 0O(1) per element 0O(1) per element
be sure to achieve | averexo o o
the running times degree(v) o))
H H adjacentVertices(v) 0O(1) per element 0(n) - to scan row/column of array
discussed in class incidentEdges(v) 0(1) per element O(n) - to scan row/column of array
* avoid unnecessary | endvertices(e) o(1) o)
loops, searching opposite(v,e) o(1) o(1)
O(min(deg(v,w))) -
areAdjacent(v,w) search list for vertex o(1)
with smaller degree
insertEdge(v,w,0) o(1) 0(1)
. 0(n) - to initialize row/col of array
(IR EEE) om 0(n?) - if array needs to grow
0O(1) - with clever bookkeeping (and
0O(deg(v)) - to remove
removeVertex(v) L wasted space)
each incident edge O(n?) - shifting in array
removeEdge(e) o(1) 0(1)

to achieve O(1) removal from a list (and for full credit), use your
own doubly-linked list implementation for lists and store the
reference to the list node
« can't just add prev, next pointers to AbstractVertex/AbstractEdge because
in the adjacency list implementation, an edge will appear in three lists —
the list of edges in the graph and the list of incident edges for each of the
edge’s vertices
» no need to search for the list node if there’s a reference stored!

